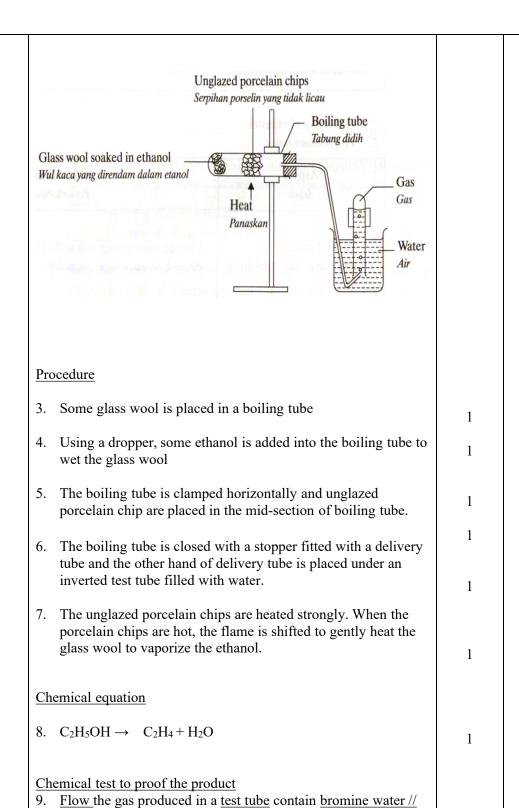
PERATURAN PEMARKAHAN PEPERIKSAAN PERCUBAAN SPM 2018 KERTAS 2

			KERTAS 2	T	
	No		Mark Scheme	Sub	Total
	1	1 (1)		Mark	marks
1	(a)	(i)	A: Salt	1	
		(**)	B: Sugar	1	2
		(ii)	Prevent or slow down the growth of bacteria	1	1
		(iii)	1. Diabetes	1	2
	(1.)	(')	2. Aspartame	1	2
	(b)	(i)	 Can cause internal bleeding of stomach Paracetamol 	1	2
		(ii)	Paracetamol Finish the medicine	1	
		(11)	Bacteria killed completely	1	2
			2. Bacteria kined completely	TOTAL	9
2	(a)		Blue	101AL	1
	(b)	(i)	The change in the volume of gas collected per unit time	1	1
	(0)	(ii)	Concentration of hydrochloric acid / hydrogen ions	1	
		(11)	2. Presence of catalyst	1	3
	(c)	(i)	Correct curve of experiment I and III	1	
		(-)	2. Label Exp I and III correctly	1	2
			Volume of H ₂ /cm ³		
			A		
			600		
			300		
			0 Time / s		
		(ii)	R		
			$= \underline{600} \text{ cm}^3 // 15 \text{ cm}^3 \text{s}^{-1}$	1	
			40 s		
			Rate of reaction III:	1	2
			$= \frac{600}{100}$ cm ³ // 20 cm ³ s ⁻¹		
			30 s (Answers with correct unit)		
		(iii)	Adding catalyst (alum/ Aluminium oxide/ Al ₂ O ₃)	1	1
<u> </u>	.			TOTAL	9
3	(a)		Sodium ion /Na ⁺ , Chloride ion / Cl ⁻ , hydrogen ion / H ⁺ , hydroxide	1	1
	/1 \	/* \	ion / OH-		
	(b)	(i)	Electrode where the oxidation occur / electron is released	1	1
		(ii)	Anode becomes thinner	1	1
		(iii)	$Mg \rightarrow Mg^{2+} + 2e$		
				1	
			Correct formulae of reactant & product	1	

			Balanced equation with electron	1	2
	(c)		Decreases.	1	
	(0)		2. The distance between Pb and Cu is nearer compare to the	1	2
			distance between Mg and Cu in Electrochemical Series	1	2
	(d)	(i)	Al ₂ O ₃	1	1
	(u)	(ii)	Aluminium	1	1
		(iv)	To low the melting point of aluminium oxide	1	1
		(11)	To low the meeting point of didininalin oxide	TOTAL	10
4	(a)	(i)	2.4	1	1
	(a)	(ii)	Z	1	1
	(b)	(i)	Covalent	1	1
	(0)	(ii)	Covarent	1	1
			[Number of atom combined: 1 W/ Carbon and 2 Y/ Oxygen] [Electron arrangement with 2 double covalent bonds]	1 1	2
	(c)	(i)	$2Z + Y_2 \rightarrow 2XY$		
			[Correct formulae of reactants and product] [Balanced equation]	1	2
		(ii)	1. Number of mole of Z $= \frac{2.4}{24} // 0.1$	1	
			2. Mole Ratio:	1	
			2 mol Z reacts with 1 mol Y ₂ //	1	
			1.1 mol Z reacts with 1 mol Y ₂	1	
			3. Mass Y ₂		
			$= 0.05 \times 32 \text{ g} // 1.6 \text{ g}$	1	3
			(mass with correct unit)	1	3
			(mass with correct unit)	TOTAL	11
				IOIAL	11
5	(a)	(i)	W	1	1
	(4)	(ii)	2.1	1	1
		(iii)	Nuclei attraction on the valence electron of atom Q is stronger than	1	-
		(111)	M	1	1
	(b)	(i)	2Fe + 3R ₂ > 2FeR ₃		
			Correct formulae reactant and product	1	
			2. Balanced chemical equation	1	2
		(ii)	2 mole of Fe produced 2 mole of FeCl ₃ //		
		` ′	0.2 mole of Fe produced 0.2 mole of FeCl ₃	1	
1			Mass of $FeCl_3 = mole X molar mass$		
			$= 0.2 \times 162.5 \text{ g} //$		

			= 32.5 g (mass with correct unit)	1	2
	(c)	(i)	 Oxide of M: Basic Oxide Oxide of V: Acidic Oxide 	1 1	2
		(ii)	 Dissolve in NaOH to form colourless solution Dissolve in HNO₃ to form colourless solution 	1 1	2
				TOTAL	11
6	(a)	(i)	 Diffusion Perfume particles move randomly from higher concentration 	1	
			region to lower concentration region.	1	2
		(ii)	The particles move faster	1	1
	(b)	(i)	Molecule	1	1
		(ii)	Arrangement of particle: Particles are arranged slightly loose then become far apart	1	
			Movement of particles: Particles move faster / freely	1	2
		(iii)	1. Number of mole of steam $= \frac{12}{24} // 0.5$	1	
			2. Mass of steam = 0.5 x 18 g // 6 g (correct answer with unit)	1	2
	(c)		 Functional diagram Label (thermometer, boiling tube, water, acetamide, heat) 	1 1	2
			Boiling tube Water Acetamide		
				TOTAL	11


SECTION B

No	Mark Scheme	Sub Mark	Total marks
7 (a)	1. Lead (II) nitrate	1	
	2. Correct axis with unit3. Correct and Smooth line4. Correct scale	1	

				1	4
	(b)	(i)	Potassium nitrate	1	7
	(6)	(1)		-	
			2. Volume of $Pb(NO_3)_2 = 5 \text{ cm}^3$	1	
			3. No of mole Lead(II) ion $= \frac{1 \times 5}{1000} // 0.005$	1	
			4. No of mole Chromate(VI) ion = $\frac{1 \times 5}{1000}$ // 0.005	1	4
		(ii)	$Pb^{2+} + CrO_4^{2-}$ $PbCrO_4$		
				1	
			1. Correct formulae of reactants and product	1	2
			2. Balanced chemical equation		
	(c)	(i)	1. Salt P = Copper(II) carbonate / CuCO ₃	1	
			2. Gas Q = Carbon dioxide	1	
			3. R precipitate = Calcium sulphate	1	3
		(ii)	$CuSO_4 + Ca(NO_3)_2 \rightarrow CaSO_4 + Cu(NO_3)_2$		
			1. Correct formulae of reactants and products	1	
			2. Balanced chemical equation	1	2
			1		_
		(iii)	Confirmatory test for cation:		
			1. Add ammonia// sodium hydroxide solution until excess	1	
			2. Blue precipitate formed dissolves in excess ammonia to		
			produce dark blue solution // blue precipitate does not dissolve		
			in excess NaOH indicates the presence of Cu ²⁺ ion.	1	
			Confirmation to the contract of		
			Confirmatory test for anion:	1	
			3. Add hydrochloric acid.	l	
			4. Add barium chloride solution.	1	~
			5. White precipitate formed indicate the presence of SO ₄ ²⁻ ion	1	5
				TOTAL	20
8	(c)		1. Change in oxidation number of iron is +2 to +3	1	
0	(a)			1	
			2. Change in oxidation number of bromine 0 to -1	1	
			3. Bromine water as oxidizing agent	1	A
	(1.)		4. Green solution turns brown solution	1	4
	(b)		1. When food can dent, the tin plate is crack and form small hole and the ion is exposed.	1	
			2. Iron atom will donates/releases 2 electrons to form iron(II)	1	
			ions		
			3. $Fe \rightarrow Fe^{2+} + 2e$	1	
			4. In food can also have water and some oxygen gas. The water		
			and oxygen gas gain electron to formed hydroxide ion	1	
			5. Iron(II) ion will combine with hydroxide ion to form iron(II)		
			hydroxide.	1	
			6. $Fe^{2+} + 2OH^{-} \rightarrow Fe(OH)_2$	1	
			7. Fe(OH) ₃ are oxidized by oxygen to form brown solid which is		
			iron(III) oxide /rust.	1	6

		(max: 6)		
	(c)	 Metal X is Mg/ Zn / Al Metal Z more electropositive than copper X is oxidized // X atom loses electron to form X²+ X → X²+ + 2e Cu²+ is reduced / receives electrons to form copper atom Cu²+ + 2e → Cu Brown precipitate formed is copper Set II Metal X more electropositive than iron Rusting does not occur X is oxidized / X atom loses electron to form X²+	1 1 1 1 1 1 1	
		9. Oxygen and water is reduced /receive electron to form OH- O ₂ + $2H_2O + 4e \rightarrow 4OH^-$	1	
		10. Pink colour shows the presence of OH ⁻ .	TOTAL	10 20
9	(a)	1. Substance: Vinegar	101AL	20
		2. Vinegar is acidic thus can neutralise the alkaline sting.	1	
		3. Vinegar is a weak acid that will not burn the skin.	1	
		4. Vinegar is also easily available.	1	4
	(b)	 Example of P: Ethanoic acid Example of Q: Sulphuric acid P is a weak acid while Q is strong acid Q ionised completely in water and produced high concentration of H⁺ ions P ionised partially in water and produced low concentration of H⁺ ions 	1 1 1	
		6. The higher the concentration of H ⁺ ions the lower pH value	1	6
	(c)	 Suggestion solid X: zinc oxide//zinc carbonate//zinc Acid Y: Sulphuric acid 	1 1	
		Preparation of zinc sulphate 3. Pour (50-100cm³) of (0.1-1.0moldm⁻³) sulphuric acid into a beaker and heat slowly.	1	
		4. Add zinc oxide//zinc carbonate//zinc powder into the acid and stir	1	
		5. Stop adding zinc oxide//zinc carbonate//zinc powder when solid cannot dissolve/ in excess.	1	

				1	
			6. Filter the mixture	1	
			7. Transfer the filtrate to a evaporating dish and heat until saturated	1	
			8. Cool down to room temperature.	1	
			9. Filter to obtain the crystal form.	1	
			10. Dry the crystal by pressing between filter paper.	1	10
				TOTAL	20
10	(a)	(i)	Reaction I = oxidation Reaction II = dehydration Homologous series = alcohol	1 1 1	3
			Accept: 2 or 3 carbon atom only		
			P: H H H - C - C - OH H H H	1	
			Q: H O H - C - C - OH H	1	
			W: H H H	1	3
			Labeled diagram 1. Functional diagram	1	
			2. Label: glass wool, ethanol, porcelain chip//alumina//other substance, water, boiling tube	1	

acidified potassium manganate(VII) solution.

10. If ethene produced then brown bromine water /purple

acidified potassium manganate(VII) solution turns colourless

1

		TOTAL	20
	4. Balanced chemical equation	1	4
	3. Correct formulae of reactant and product	1	
	$C_2H_5OH + 2[O] \rightarrow CH_3COOH + H_2O$		
	2. Acidified potassium manganate(VII) solution// potassium dicromate(VI) solution.//Ethanol	1	
(b)	1. Q = Ethanoic acid	1	
			10