CONFIDENTIAL

4541/2 Chemistry Paper 2 August 2018

SIJIL PENDIDIKAN MAKTAB RENDAH SAINS MARA 2018

CHEMISTRY

Paper 2

MARKING SCHEME

FOR EXAMINER'S USE ONLY

ATTENTION

This marking scheme is Confidential and copyright of MARA. It is exclusively for examiner's use only. No information in this marking scheme is allowed to be made known to anyone. This marking scheme is not permitted to be copied in any written or printed form

The marking scheme consists of 13 printed pages

-	1	MARKING SCHEME		TOTAL MARKS
(a)	(i)	Pure metal : J		
		Alloy: K	1	1
	(ii)	P1 : The presence of <u>zinc atoms</u> that are <u>different size</u>		
		disturb/disrupt the orderly arrangement of copper atoms	1	
		P2 : Reduce/minimize/difficult/ the layer of copper atoms		
		from sliding.// not easily slide	1	2
		r: prevent		
(b)	(i)	Penicillin	1	1
	(ii)	Psychotherapeutic	1	1
	(iii)	Paracetamol	1	1
	(iv)	Sample answer:		
		P1. Barbiturates are useful.	1	
		P2. It can cure many mental problems.	1	
		P3. It can be used as prescribed by doctors.	1	
		or		
		P1. Barbiturates are bad.	1	
		P2. It can cause addiction/ death	1	
		P3. If overdose	1	3
			Total	9

,	2	MARKING SCHEME	MARK	TOTAL MARKS
(a)	(i)	2.8	1	1
	(ii)	Atom W achieve stable octet electron arrangement//	1	1
		Atom W has 8 valence electron		1
(1	b)	Y // Cl	1	1
((c) Z // Fe		1	1
(d)	(i)	P1 correct chemical formula of reactants and products	1	
		P2 balance	1	
		Sample answer:		2
		$2X + 2H_2O \rightarrow 2XOH + H_2$		_
		$//2$ Na + 2H ₂ O \rightarrow 2NaOH + H ₂		
	(ii)	2 mol X produce 1 mol H ₂	1	
		Volume of $H_2 = 1 \times 24$		
		$= 24 \text{ dm}^3 \qquad [r: without unit]$	1	2
		_ : [20 (10 000 0000)]	1	2
((e) Element R is more reactive than element X		1	1
			Total	9

	3	MARKIN	NG SCHEM	E		MARK	TOTAL MARK
(a)	(i)	A chemical formula that sho	-	est ratio of ator	ns of	1	
		each element in a compound.					
	(ii)	СН	CH			1	
	(iii)	CH ₃ COOH / C ₂ H ₄ O ₂				1	3
(b)	(i)						
, ,	, ,	Element	Cu	О			
		Mass of element (g)	1.92	0.48		1	
		Number of moles	1.92÷64	0.48÷16			
			= 0.03	=0.03		1	
		Simplest ratio of moles	0.03÷0.03	0.03÷0.03			
			= 1	= 1		1	
		Empirical formula : CuO			•	1	4
	(ii)	By heating, cooling and we	eighing until	a constant ma	ass is	1	1
		obtained.					1
	(iii)	P1 Cannot.				1	
		P2 Because magnesium is above hydrogen in the Reactivity				1	
		Series// Magnesium is m	-		2		
		r: electropositive					
	The coordinate of the coordina						10

4	4	MARKING SCHEME	MARK	TOTAL MARKS
(a)	(i)	Chemical / Substance that can conduct electricity in aqueous or molten state and <u>undergoes chemical changes</u> .	1	1
	(ii)	Cl ⁻ and OH ⁻ // chloride ion and hydroxide ion	1	1
	(iii)	P1 Chlorine gas	1	
		P2 Because concentration of Cl ⁻ ion is higher than concentration of OH ⁻ ion		2
	(iv)	$2Cl^- \rightarrow Cl_2 + 2e$	1	1
	(v)	Hydrogen gas	1	1
	(vi)	P1 Put/place a lighted wooden splinter near the mouth of the		
		test tube.	1	2
		P2 'Pop' sound is heard/produced.	1	2
(1	b)	Copper — Magnesium Sodium nitrate solution		
		P1 Functional diagram P2 Label	1 1	2
			Total	10

	5	MARKING SCHEME	MARK	TOTAL MARKS
((a) Catalyst is a substance that change/alters the rate of reaction and remain chemically unchanged.			
(1-)		and remain chemically unchanged.	1	1
	D)	Volume of gas (cm³) 50 40 1 1 Time(min) P1. Correct shape of the graph with label I and II P2. I shell volume of gas and time at 2 mins	1	
		P2. Label volume of gas and time at 3 mins	1	2
(c)	(i)	$40 \div 3 = 13.33 \text{ cm}^3 \text{ min}^{-1}$ r: without unit	1	
	(ii)	$50 \div 3 = 16.67 \text{ cm}^3 \text{ min}^{-1}$	1	2
	(11)	r: without unit		
	(iii)	The rate of reaction of Set I is lower than Set II //		
		The rate of reaction of Set II is higher than Set I	1	1
	(iv)	 P1. Catalyst provide alternative path with lower activation energy. P2. More colliding reacting particles can achieve the lower activation energy. P3. Frequency of effective collision between H⁺ ion and Zn atom is higher. 	1 1 1	3
(d)	Sample answer:		
		P1. Cut the meat into smaller pieces P2. It will increase the total surface area of the meat P3. More heat is absorbed by the meat. OR P1. Cook the meat by using pressure cooker. P2. When pressure increase, it will increase the boiling point	1 1 1	
		of water / increase the temperature	1	3
		P3. More heat is absorbed by the meat.	1	Max 2
			Total	11

6		MARKING SCHEME		TOTAL MARKS
(a)	(i)	P1 correct chemical formula of reactants and products	1	
		P2 balance	1	2
		Answer:		
		$3C + 2Fe_2O_3 \rightarrow 3CO_2 + 4Fe$		
	(ii)	From $+3$ to $0 // +3 \rightarrow 0$	1	1
	(iii)	Iron (III) oxide	1	1
(1)	P1. Set II no reaction because magnesium is more reactive	1	
		than carbon.		
		P2. Set III, Metal X / copper is formed shows carbon is more	1	2
		reactive than metal X.		
(0	c)	X, Fe, C, Mg		1
(d)	(i)	Rusting	1	1
	(ii)	P1. Diagram with label for iron, water (droplet) and oxygen	1	
		P2. Flow of electron in the iron	1	
		P3. Half equation at anode	1	3
		Sample answer: Rust Water droplet		
		Water O_{2} Fe^{2+} F^{2+} F^{2		
			Total	11

,	7	MARKING SCHEME	MARK	TOTAL MARKS
(a)	(i)	 P1. Diffusion P2. The mothballs vapour particles/molecules are tirdiscrete P3. which move <u>freely/randomly</u> in between the air particles/molecules P4. From the higher concentration area/region to the 	1	
		concentration area/region	1	4
	(ii)	P to Q R	to S	
		State of matter Solid Liquid		
			rotate and	
		particle at their fixed move/slie positions throughough liquids	de	
		Particles arrangement	1+ 1	6
(b)	(i)	P1. Atoms are isotopes	1	
		P2. Atoms have the same number of proton but diffe		
		of neutron adp: atoms for P2	1	
		a: <u>Atoms</u> have the same proton number but different number	nucleon	2
	(ii)			
		C-12 C-13	C-14	
		Number of proton 6 6 Number of neutron 6 7	$\begin{array}{c c} 6 \\ \hline 8 \\ \end{array}$	
		Number of electron 6 6	6 1	
		Physical properties Different	1	
		Chemical properties Similar	1	5
		a: any specific chemical reaction of carbon. Eg: Carbon reacts with oxygen produces carbon did	oxide	
	(iii)	P1. Nucleus is shown (labeled/shaded)	1	
		P2. Number of proton & neutron is		
		shown in the nucleus P3 Correct number of shells and		
		P3. Correct number of shells and its electrons	1	3
			Total	20

;	8	MARKING SCHEME	MARK	TOTAL MARKS
(a)	(i)	Method I: Copper(II) nitrate / magnesium chloride	1	
		Method II– Barium sulphate	1	2
		a: formula		
	(ii)	Reactants for insoluble salt: any suitable answer		
		P1. Soluble barium salt – Barium nitrate / Barium chloride	1	
		P2. Soluble sulphate salt – Sodium sulphate // potassium sulphate	1	2
		// ammonium sulphate etc.		
		a: formula		
(b)	(i)	Lead(II) nitrate r: formula	1	1
	(ii)	P1. No. of moles of $Pb^{2+} = 0.1 \times 5$		
		1000		
		= 0.0005 mole	1	
		P2. No. of moles of $I^- = 0.2 \times 5$		
		1000		
		= 0.001 mole	1	
		P3. 0.0005 moles of Pb ²⁺ reacts completely with 0.001 moles of I	1	
		1 moles of Pb ²⁺ reacts with 2 moles of I	1	
		P4. Simplest ratio Pb ²⁺ : I ⁻ is 1:2	1 1	5
()	(*)	$P5. Pb^{2+} + 2 I \rightarrow PbI_2$		3
(c)	(i)	Gas V : carbon dioxide	1	
		Solid W: Zinc carbonate	I	
		Salt Y : Zinc nitrate	1	4
		Solid Z: Zinc Oxide	1	4
	(ii)	P1: Pour solution Y into two different test tubes	1	
		P2: Add drop by drop of ammonia solution until in excess and		
		shake.	1	
		P3: White precipitate is formed and dissolve in excess ammonia.	1	
		P4 : Add 2 cm ³ dilute sulphuric acid followed by 2 cm ³ iron(II)		
		sulphate	1	
		P5: Add concentrated sulphuric slowly// slant the test tube		
		carefully	1	
		P6: A brown ring is formed	1	6
			Total	20

	9	MARKING SCHEME	MARK	TOTAL MARKS
(a)	(i)	P1. X: 2.8.1	1	
		P2. Y: 2.4	1	
		P3. Z: 2.8.7	1	3
	(ii)	OPTION 1	1	
		P1. X and Z formed ionic bond	1 1	
		P2. To achieve [stable] octet electron arrangement P3. V stem release/denote one [valence] electron to form Y ⁺	1	
		P3. X atom release/donate one [valence] electron to $\underline{\text{form } X^+}$ ion.		
		P4. Z atom gain/receive one electron to <u>form Z</u> ion	1 1	
		P5. X ⁺ and Z ⁻ are attracted by strong electrostatic force	1	
		P6 & P7. Diagram	-	
		 Correct number of shells and electron 	1	
		 Labeled nucleus and charge of ions 	1	
		-		
		г 🗻 ¬+Г 🙀 ¬-		
		\$ (🖾) \$ \$ \$ (②) \$ \$		
		OPTION 2		
		P1. Y and Z form covalent bond	1	
		P2. To achieve [stable] octet electron arrangement	1	
		P3. One atom Y contribute 4 electrons while	1	
		P4. each atom Z contribute 1 electron	1	
		P5. One atom Y share 4 pairs of/8 electrons with four atom Z	1	
		P6 & P7. Diagram	1	
		 Correct number of shells and electron 	1	
		Labeled nucleus and correct number of atom	1	
				7

(b)	Compound T: Sodium chlorid Compound V: Hexane	e/magnesium chloride, etc.	1	
	a: any ionic and covalent com	nound	1	
	a. any tonic una covatent com	рошш		
	Experiment 1: Melting point of	or boiling point		
	Procedure:	1m 1		
	1	ound T and pour compound V in		
	evaporating dish separately		1	
	2) Leave aside / heat for [5-10	-	1	
	3) Observe and record the cha	ange	1	
	Ot	oservation		
	Compound T remains as	Liquid V disappears//		
	solid	Volume of liquid V	1	
		decreases		
	Experiment 2: Solubility in wa			
	Procedure:			
	1) Pour 5 cm ³ of water into tw		1	
		ound T and 2 cm ³ of compound V		
	into each test tube separatel	y and shake	1	
	3) Observe and record the cha	nge	1	
	Obse	ervation		
	The solid T dissolve in	Liquid V does not dissolve	1	
	water	in water	1	
	Conclusion:			
	Compound T is ionic compound			
	compound		10	
	1		1	10
			Total	20

1	0		MARKING SCHEM	IE	MARK	TOTAL MARKS
(8	a)	P1. Total energy ab 1740 + 994 = 2734			1	
	P2. Total energy released, E_y 1606 + 1856 = 3462 kJ of energy			1		
	P3. Energy change, $\Delta H = E_x - E_y$ = 2734 - 3462 = - 728 kJ mol ⁻¹ P4. Exothermic reaction				1 1	4
(b)	(i)					
			Set I	Set II		
		Heat change in the reaction	Heat release	Heat absorb	1	
		The change in total energy of reactants and	Total energy content of reactants is higher than total	Total energy content of reactant is lower than total		
		products	energy content of products	energy content of product	1	2
	(ii)	P1. Number of mol	e CuSO ₄ = $\frac{100 \times 1.0}{1000}$ = 0.	1 mol	1	
		P2. Heat released =	$100 \times 4.2 \times 12 = 5040$	J	1	
			of 0.1 mol Cu $\rightarrow 5040$ of 1 mol Cu $\rightarrow \frac{5040 \times 10^{-2}}{0.1}$		1	
		P4. $\Delta H = -50.4 \text{ kJ}$			1	4
(0	c)	P1.Soluble salt 1: so precipitate/ inso.	uitable carbonate salt s luble salt	olutions to produce		
		Sample Answer: Sodium carbonate solution/ ammonium carbonate solution/potassium carbonate solution.			1	
	P2. Soluble salt 2: suitable zinc salt solutions to produce precipitate/ insoluble salt					
	Sample answer: Zinc nitrate solution/zinc sulphate solution/zinc chloride solution		1 == 2			

Procedure:		
P3. Measure [25-200] cm ³ of [0.1-2.0] moldm ⁻³ zinc nitrate	1	
solution.		
P4. Pour into a polystyrene cup.	1	
P5. Measure [25-200] cm ³ of [0.1-2.0] moldm ⁻³ sodium	1	
carbonate solution.		
P6. Pour into a different polystyrene cup.	1	
P7. Measure the initial temperature of both solutions.	1	
P8. Pour sodium carbonate solution quickly into zinc	1	
nitrate solution.[a: vice versa]		
P9. Stir the mixture.	1	
P10. Record the highest/maximum temperature.[r: final	1	
temperature]	==	
	8	
	Max 7	
	1	10
$P11. Zn(NO3)2 + Na2CO3 \rightarrow ZnCO3 + 2NaNO3$		
	Total	20

TEST SPECIFICATION TABLE SIJIL PENDIDIKAN MRSM CHEMISTRY PAPER 2, 2018

Section	Question Number (Topic)	Construct of Elements Evaluated					
		CK 01 Knowledge	CS 01 Comprehension	CS 02 Application	CS 03 Analysis	CS 04 Synthesis	
		6	3				
	Q1 Manufacture Substance in Industry & Chemical For Consumer	1a(i)[1m] 1a(ii)[2m] 1b(i)[1m] 1b(ii)[1m] 1b(iii)[1m]	1b(iv)[3m]				
	Q2 Periodic Table of Elements	3	2	4			
		2a(i)[1m] 2a(ii)[1m] 1b(i)[1m]	2c[1m] 2e[1m]	2d(i)[2m] 2d(ii)[2m]			
		3	3	4			
	Q3 Chemical Formulae & Equation	3a(i)[1m] 3a(iii)[1m] 3b(ii)[1m]	3a(ii)[1m] 3b(iii)[2m]	3b(i)[4m]			
A		2	3	5			
	Q4 Electrochemistry	4a(i)[1m] 4a(ii)[1m]	4a(iii)[2m] 4a(v)[1m]	4a(iv)[1m] 4a(vi)[2m] 4b[2m]			
		1	8	2			
	Q5 Rate of Reaction	5a[1m]	5b[2m] 5c(iii)[1m] 5c(iv)[3m] 5d[2m]	5c(i)[2m]			
		1	4	5	1		
	Q6 Redox	6d(i)[1m]	6a(ii)[1m] 6a(iii)[1m] 6b[2m]	6a(i)[2m] 6d(ii)[3m]	6c[1m]		

Section	Question Number (Topic)	Construct of Elements Evaluated					
		CK 01 Knowledge	CS 01 Comprehension	CS 02 Application	CS 03 Analysis	CS 04 Synthesis	
В	Q7 The Structure Of Atom		6	3	11		
			7a(i)[4m] 7b(i) [2m]	7b(iii)[3m]	7a(ii)[6m] 7b(ii) [5m]		
			4	6	10		
	Q8 Salts		8a(i)[2m] 8a(ii)[2m]	8b(i)[1m] 8b(ii)[5m]	8c(i)[4m] 8c(ii)[6m]		
C				3	7	10	
	Q9 Chemical Bonds			9a(i)[3m]	9a(ii)[7m]	9b[10m]	
	Q10 Thermochemistry			2	8	10	
				10a(i)[2m]	10a(ii)[5m] 10b[3m]	10c[10m]	

END OF MARKING SCHEME