SKEMA KERTAS 2 PERCUBAAN SPM 2018

Marking Script

SECTION A

Question			Marking Scheme	Marks	Total
1.	(a)	Y		1	1
	(b)	Per	Perpendicular		1
	(c)	(i)	Increase	1	1
		(ii)	Long wavelength more diffract/ Short wavelength less diffract	1	1
			Total	4	

2	(a)	Pas	cal's Principle	1	1
	(b)	Ford	e needed to compress the air bubble	1	1
	(c)	(i)	Pressure at X , $P_x = 50 \text{ N} / (10 \text{ x} 10^{-4})$	1	2
			P _x = 50 000 Pa @ 5 Ncm ⁻²	1	
		(ii)	Weight of load, W = 50 000 x (100 x 10 ⁻⁴)	1	1
			W = 500 N		
			Tot	al 5	

3	(a)	Para	llel	1	1
	(b)	A ₁ =	2.0 A	1	1
		$A_3 =$	1.0 A		
	(C)	(i)	V = 1 X 4	1	2
			= 4 V	1	
		(ii)	1/4 + 1/4 // 2	1	1
		(iii)	$ _{1} = _{2} + _{3}$	1	1
			Total	6	

4.	(a)	Com	ponent that can conduct electricity better than insulator but	1	1	
		not g	good as conductor.			
	(b)	(i)	circuit P: Reversed-biased //anode diode connect to	1	2	
			negative battery	1		
			circuit Q: Forward-biased //anode diode connect to positive			
		()	battery			
		(ii)	ammeter reading in circuit P is zero and in circuit Q is 2 A	1	1	
	(c)	Diod	le in forward bias allow current flow//Diode in reverse bias not	1	1	
		allov	v current flow			
	(d)	(i)				
				All √.	- 1 m	
				7 41 1		
		(::)		4	4	
		(11)	Full wave rectification	1	1	
		(iii)	Current smoother/ constant magnitude of dc/	1	1	
			Total	7	,	
F	(a)	A pr	operty of matter that enables an object to return to its size	4	4	
э.	(a)	and	shape when the force that was acting on it is removed.	I	I	
	(b)	(i)	Diagram 5.1 in series arrangement.	1	1	
	(U)	(1)	Diagram 5.2 in parallel arrangement.	1	1	
		(ii)	Diagram 5.1 > Diagram 5.2	1	1	
			Series arrangement, longer extension //			
		(111)	Parallel arrangement, shorter extension.	1	1	
		()	Increase, decreas/ inversely propotional/	4		
		(1V)	spring constant α 1/extension	1	1	
		Red	uce the diameter of spring coil//increase the diameter of	1		
	(c)	sprir	ng//Reduce the length of the spring	I	2	
	(0)	To ir	ncrease the spring constant//to increase the stiffness of the	1	2	
		spring// less elastic spring// low extension		ľ		
	(d)	Hoo	ke's law	1	1	
			Total	8		

6.	(a)	Elect	tromagnetic induction	1	1
	(b)	(i)	Diagram 6.1 – anticlockwise Diagram 6.2 - Clockwise	1	1
		(ii)	Same	1	1
		(iii)	Diagram 6.1 – North Diagram 6.2 - South	1	1
		(iv)	Magnet moving towards solenoid, P becomes the same pole as magnet. // Magnet moving away from solenoid, P becomes opposite pole as magnet.	1	1
	(c)	Lenz	's law	1	1
	(d)	Incre	ease height of magnet dropped /	1	
		Incre	ease strength of magnet	1	2
		Incre * ar	ease number bar magnet dropped ny 2		
			Total	8	
7.	(a)		Incident angle that produced refraction angle 90° /	1	1
			Incident angle produced refracted ray lie on boundary		
	(b)	(i) (ii)	Transparent plastic cover Penutup plastik lutsinar Incident ray Sinar tuju 30° 30° 30° 30° 30° 30° 30° 30°	1	1
		(")	The angle of incidence is less than the critical angle.	1	2
					_

	(c)	(i)	45°, 90°, 45°.	1	
			Reflect more light./Total internal reflection occur	1	2
		(ii)	Increase/ many	1	
			The number of total internal reflection increase	1	2
	(d)		1 / sin 42°	1	
			1.49	1	2
			Total	1	0
8.	(a)	1	Thermal equilibrium	1	1
	(b)	(i)	= 20 – 6 // 14 cm	1	1
		(ii)	$= (16-6)/(20-6) \times 100$	1	
			= 71.43°C	1	2
		(iii)	Less than 100°C	1	1
	(c)	(i)	30 – 45//small	1	1
		(ii)	Normal body temperature is 37°C	1	1
		(iii)	Small	1	1
		(iv)	Not too big//increase sensitivity	1	1
		(v)	0.1//small	1	1
		(vi)	Increase sensitivity/accuracy	1	1
		(vii)	Q	1	1
			Total	1	2

SECTION B

Question		Γ	Marks	Total	
9.	(a)	Barometer aneroid		1	1
	(b)	Altitude M is lower than Volume of vacuum cha Atmospheric pressure	n N Imber in diagram 9.2 is smaller than 9.3 in diagram 9.2 is greater than 9.3	1 1 1	3
	(c)	Altitude increases, the increases Altitude increases, the	e volume of vacuum chamber is also atmospheric pressure decreases	1	2
	(d)	As the altitude is higher density of air decrease Air molecules move decreases Rate of molecules co momentum decreases Force per unit area dec	1 1 1 1	Max 4	
	(e)	ModificationsUse floor pumpMetal baseLong handleWider steel baseLarger size of pumpLonger cylinderpumpLower density ofpumpSmaller size ofnozzle	Explanations Has a pressure gauge and are capable of high pressure Stronger and long lasting Better grip To provide extra stability during usage Can produce bigger pressure To produce higher pressure/ can reduce pumping Lighter , can easily to carry Create higher speed of gas	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Max 10
			Total	20)

Question		Marking Scheme			Ма	rks	Total
10	(a)	A wathe	ave which the vibratior direction of wave propa	n of particles in medium is parallel to agation		1	1
			displacement of the p	ing pong ball in Diagram 10.2 > 10.1		1	
	(b)	(i)	amplitude in Diagram	10.2 > 10.1		1	3
			loudness of the sound	d in Diagram 10.2 > 10.1		1	
		(ii)	greater loudness, the pong ball	greater the displacement of the ping		1	1
		(iii)	(iii) the greater loudness, the greater the amplitude of sound				
		whe	n speaker receive inpu	t, the diaphragm vibrate		1	
		diap	hragm move forward	l, produced a compression of air		1	
		mole	ecules in front of the sp	eaker		1	Max
	(C)	mole	molecules				4
		serie	series of compression and rarefactions produce sound wave//				
		direc	ction of vibration of me				
		prop	agation of the waves.//	longitudinal waves			
		M	odification	Explanation / Reason			
		ul ve	trasonic wave //	high frequency // high energy			
		SC	bund wave		1	1	
		hi	gh frequency	high energy // able to	1	1	
				travel further			
	(1)	sh	ort wavelength	less diffracted / travel in narrow beam // less energy loss	1	1	Max
	(d)	pł	nenomenon reflection	produce echo //			10
		Wa	ave	reflected the waves	1	1	
		tra	ansducer	to receive wave	1	1	
		cr	nall porcontago of	able to popetrate the			
		at	osorption by water	deep sea // less energy loss// more reflect	1	1	
		<u> </u>		Total		2	D

SECTION C

Question		Marking Scheme			Ма	arks	Total
11	(a)	(i)	The total momentum of external force acts on th	a system remains unchanged if no ne system		1	1
		(ii)	Air is mixed with the fuel exhaust	l in the combustion chamber produce		1	
			Burn/ combustion			1	
			Hot/ high temperature is pushes out with very high velocity Produces large momentum backward			1	Max 4
			Based on the Principle	Conservation of Momentum,		1	
			same magnitude of momentum forward is produced to push the plane.				
			Aspect	Explanation			
	(b)	Big	opening for air intake	More air can be taken in	1	1	
		Tita	anium blades	Strong and never rusty	1	1	
		Big	combustion chamber	More fuel can be burnt,produce bigger momentum	1	1	10
		Sm gas	all opening for exhaust	Velocity exhaust gas increase,bigger backward momentum	1	1	10
		Ch	oose : S	Because it has large opening for air intake, using titanium blades, big combustion chamber and has small opening for exhaust gases.	1	1	
	(C)	(i)) F = ma $1.0 \times 10^{6} = 4.0 \times 10^{5} \times a //$ $a = \frac{1.0 \times 10^{6}}{4.0 \times 10^{5}}$			1	2
		(11)	= 2.5 ms ⁻²			1	
		(ii)	$v^2 = u^2 + 2as$ $85^2 = 0 + (2 \times 2.5 \times s)$ $s = 85^2/5$ s = 1445 m			1 1 1	3
				Total		2	0

Question		Marking Scheme			Marks	Total
12.	(a)	Isot	ope with unstable nucleus an	nd tend to decay	1	1
	(b)	Rad GM If ra posi If ra posi	ioisotope is injected into the tube is used as detector is m temeter show high reading , tion has leakage temeter show low reading , le tion has no leakage	1 1 1	4	
	(c)	Aspects Reasons Aspek Sebab				
		1.	State of matter of radioactive is liquid	Easily mix with water / Easily flow through the pipe	1 1	
		2.	High penetrating power	Can penetrate through the ground	1 1	
		3.	Gamma ray	High penetrating power	1 1	10
		4.	Short half-life	Take shorter time to decay / Does not stay too long in water / Safer to be consumed	1 1	
		5.	Sodium-24 is the most suitable.	Because it is in liquid form, has high penetrating power, emits gamma ray and has short half-life.	1 1	
	(d)	 (i) Mass defect / Cacat jisim = [235.04392u + 1.00867u] - [91.92611u + 140.91441u + 3(1.00867u)]] – [91.92611u + 140.91441u +		M1 – m dlm u
			= 0.18606 u = $0.18606 \text{ u} \times 1.66 \times 10^{-27}$ = $3.008596 \times 10^{-28} \text{ kg}$		1	M2 – m dlm unit kg
		(ii)	Energy released / Tenaga y = mc^2 = [3.008596 x 10 ⁻²⁸ x (3 x = 2.7797 x 10 ⁻¹¹ J	rang dibebaskan 10 ⁸) ²]	1 1 1	M1 – Ganti nilai u M2 – ganti nilai dalam persamaan M3 – jawapan dgn unit yang betul
				Total		20