\star

MODUL PINTAS TINGKATAN 5

Peperiksaan Percubaan Tahun 2019

Skema Jawapan Fizik

Kertas 2 4531/2

Jawapan Pintas Trial T5 P2

No 1	Scheme	Sub Mark	Total Mark
(a)(i)	acceleration	1	1
(a)(ii)	Displacement / distance	1	1
(b)	Constant/uniform acceleration // increasing velocity	1	1
(c)	7 s	1	1
	Total		4

No 2	Scheme	Sub Mark	Total Mark
(a)	Less dense Narrow tube	1	2
(b)	P = 76 + 9 = 85 cm Hg = $\frac{85}{100}$ x 13600x10 = 115 600 Pa	1 1 1	3
	Total		5

No 3	Scheme	Sub Mark	Total Mark
(a)	State the meaning of radioactivity Spontaneous decay of unstable nucleus accompanied by the emission of radioactive rays		1
(b)	State the method finding half-life Show on the graph how the half-life is determined State the half-life with unit Half-life = 14 //15 days		2
(c)	State the method to find the activity $200 \rightarrow 100 \rightarrow 50$ State the activity 28//30 days	1	2
(d)	Complete the equation correctly	1	1
	Total		6

No 4	Scheme	Sub Mark	Total Mark
4(a)(i)	The ratio of sine of incident angle to sine of refracted angle	1	1
(ii)	Mark and label correctly	1	1
(iii)	1	1	2
	<i>sin</i> 45 ⁰ 1.4142	1	
(iv)	Any value less than 45 [°]	1	1
(b)	Total Internal Reflection	1	1
(c)	They have different refractive index // optical density // critical angle	1	1
	Total		7

No 5	Scheme	Sub Mark	Total Mark
(a)	A region where a magnetic force acts on it	1	1
(b)(i)	The current in both diagrams are the same	1	1
(b)(ii)	The distance of wire PQ in diagram 5.3 is further	1	1
(b)(iii)	The magnetic field in diagram 5.3 is higher	1	1
(c)(i)	The higher the strength of magnetic field, the further the distance of wire PQ	1	1
(c)(ii)	The higher the strength of magnetic field, the greater the forced produced	1	1
(d)(i)	Vibrates // stationary	1	1
(d)(ii)	AC changes its direction alternately	1	1
	Total		8

No 6	Scheme	Sub Mark	Total Mark
(a)	(i) transverse	1	2
	(ii) perpendicular	1	
(b)	(i) the size of the gap 6.1 larger than 6.2	1	2
	(ii) the spreading of the waves after the gap 6.1 less than 6.2 /	1	
	6.2 is more circular than 6.1 / diffraction 6.2 is more obvious		
	than 6.1		
(c)	(i) the larger the size of the gap, the lower the spreading of the	1	2
	waves after the gap / less circular the waves		
	(ii) the more the spreading of the waves / more obvious the	1	
	diffraction of waves, the smaller the amplitude of the waves,		
(d)	(i) diffraction	1	2
	(ii) the wavelength of light waves is too small // diffraction	1	
	does not occur		
	Total		8

No 7	Scheme	Sub Mark	Total Mark
(a)	Ratio of potential difference to current Nisbah antara beza keupayaan dengan arus	1	1
(b)(i)	Series (Diagram 7.1) Sesiri (Rajah 7.1) $R = 2 + 2 + 2 = 6 \Omega$	1	3
	Parallel (Diagram 7.2)		
	Selari (Rajah 7.2) $\frac{1}{R} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	1	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
(c) (i)	Bulbs in Diagram 7.2 are brighter Mentol-mentol dalam Rajah 7.2 lebih cerah	1	1
(c)(ii)	The effective resistance is low// more current flows Rintangan berkesan rendah // lebih arus yang mengalir	1	1
(d)(i)	-More number of dry cells Lebih bilangan se lkering	1	2
	-More current flows // more voltage Lebih arus yang mengalir // lebih voltan	1	
(d)(ii)	-Series	1	2
	<i>Sesiri</i> - Produce higher EMF	1	
	Total		10

No 8	Scheme	Sub Mark	Total Mark
(a)	Specific latent heat of vaporisation	1	1 1
(4)	Haba pendam tentu pengewapan	-	-
(b)	1. Molecules become more closely packed/the bonds between	1	
	the molecules is formed		
	2. Specific latent heat of fusion is released	1	
	3. Average kinetic energy of the molecules does not change	1	
	1. Molekul-molekul menyusun semula menjadi lebih rapat/		
	ikatan antara molekul terbentuk		
	2. Haba pendam tentu pelakuran dibebaskan		
	3. Purata tenaga kinetic molekul tidak berubah		Max: 2
(c)(i)	– high	1	2
	tinggi		
	- can absorb more heat from the food	1	
	Boleh menyerap lebih haba daripada makanan		
(c)(ii)	- low	1	2
	rendah	1	
	- Can vaporise easily		
	Senang mengewap		
(c)(iii)	L	1	1
(d)(i)	Pt = 750X3X60	1	2
	$= 1.35X10^5 J$	1	
(d)(ii)	$Q = mc\theta$		2
	$1.35X10^5 = 2XcX40$	1	
	$c = 1687.5Jkg^{-1o}C^{-1}$	1	

		Т	otal		12
No 9		Scheme		Sub Mark	Total Mark
(a)	A push or a pull / quantity	which change the motion of an		1	1
	object // change velocity / o	change of direction / size / shape			
$(\mathbf{h})(\mathbf{i})$	Reject : $F = ma / rate of ch$	ange of momentum		1	=
(0)(1)	2. The force applied in both	h diagrams is the same		1	3
	3 The contact surface area	in Diagram 9.1 is smaller than it	h	1	
	Diagram 9.2	in Diagram 9.1 is smaller than in	1	1	
	4. The bigger the surface at	rea, the smaller the depth of sinki	ing.	1	
	5. Pressure	ľ	U		
(b)(ii)	1. When force is exerted o	n small piston, pressure is produ	iced	1	4
	[P=F/A]				
	2. Pressure will be transmi		1		
	parts of the enclosed lic		1		
	3. The same pressure exert		1		
(a)	4. Large piston will produce bigger force [r=r x A]			1	10
(0)	Aspect	Explanation			10
	Big squeeze bulb	More air can be squeezed		2	
	Elastic squeeze bulb	Can return to its original shape easily		2	
	Narrow mid tube	Air flows at high speed		2	
	Narrow noozle	Higher pressure		2	
	plastic	lighter		2	
		Т	otal		20

No 10	Scheme	Sub Mark	Total Mark
(a)(i)	State the potential difference across X and Z 6V	1	1
(ii)	State the total resistance across X and Z $10k\Omega + 20k\Omega$ // 30 k Ω	1	1
	Show the correct substitution	1	2
(ii)	$I_{xz} = \frac{6}{30x10^3}$		
	Answer with correct unit	1	
	2 x 10 ⁻⁴ A		
	Show the correct substitution	1	2
(iv)	$V_{BE} = \frac{10 \times 10^{3}}{30 \times 10^{3}} \times 6$		
	State the potential difference across YZ	1	
	2V		
(11)	Show the function correctly	1	1
(V)	To protect transistor (from high I)		
(b)	Give the explanation correctly	1	

	1. High resistance of LD	R / R_x high / R_{LDR} high / R_{TU} high in	1	
	2 notential difference ac	1		
	2. potential unreference at $V_{\rm p}$ high high $V_{\rm p}$ / high	$V_{\rm LDD}$	1	
	3. $I_{\rm b}$ / base current flow	LDK	-	
	4. higher Ic / collector c	urrent flows / transistor activated /		
	current flows through	h LED / diode		Max:3
	M1-State the	M2-State the reason for MI	2	10
	electronic	Thermistor is sensitive to heat //		
	component at	the resistance of thermistor		
	terminal XY	decreases when the temperature		
	Thermistor at R ₁	increases // Its resistance varies		
	position	with temperature		
	M3-State the	M4-State the reason for M3	2	
	electronic	Potential difference across R ₁ is		
	component at	high when the room is hot /		
	terminal YZ	Resistance of R_1 is higher than		
	resistor R_1 at LDR	thermistor // potential difference		
(a)	position	across thermistor is low		
(C)	M5-State the	M6-State the reason for M5	2	
	electronic	to convert electrical energy to		
	component at	sound energy		
	LED			
	Alarm			
	M5-State the	M6-State the reason for M5	2	
	electronic	Relay can switch on the alarm / to		
	component at	switch on the secondary circuit		
	LED			
	Relay at LED			
	position			
	Symbol - termistor		2	
		TOTAL		20

No 11	Scheme	Sub Mark	Total Mark
(a)	Hooke's law	1	1
(b)	 Explanation includes <u>Thrust force</u> of the train is used to <u>compress spring</u> Lengthen the time of impact 	1	4
	 reduce <u>impulsive force</u>, <u>Kinetic energy</u> of the train compresses spring and becomes 	1	
	elastic potential energy stored in the spring	1	
(c)	Characteristic Explanation Small diameter Stiff spring //Large spring constant // [1] Small length of compression// Harder to compress [1] Thick spring Stiff spring //Large spring constant // wire [1] Small length of compression// Harder to compress oppment Small length of compression// Harder to compress	2	10
	Rubber Longer time of impact // reduce [1] impulsive force [1] High density Withstand higher force // more compact [1] [1] Q is chosen hecause small diameter, thicker spring wire, rubber and high	2	
	density.	1	
(d)	 (i) F = m a = (3.0 kg) (0.5 m s⁻²) = 1.5 N (ii) From the graph, spring constant, k = 20 N / 4 cm k = 5 N cm⁻¹ The compression of the spring, x = F/k = (1.5 N) / 5 N cm⁻¹ = 0.3 cm (iii) E_P = ¹/₂ Fx = ¹/₂ (1.5 N) (0.003 m) = 0.00225 J 	1 1 1 1	5
	Total		20

No 12	Scheme		Sub Mark	Total Mark
(a)(I)	Number of complete oscillations in one second.		1	1
(a)(ii)	• Frequency is inversely proportional to wavelength		1	4
	High pitch sound has high frequency and short wavelength		1	
	• Short wavelength sound is more difficult to be diffracted by the corner. Therefore, only student U can hear the sound clearly.		1	
	• Low pitc easier to students	ch sound has long wavelength sound and it is be diffracted by the corner. Therefore, all the can hear the sound clearly.	1	
(b)(i)	8 x 50 ms			1
	400 ms		1	
(b)(ii)	1400 x $\frac{1}{2}$ x(b) (i) answer		1 1	2
(b)(iii)	1400		1	2
(0)(111)	35000 0.04 m		1	-
(c)	Characteristic	Reason		10
	Concave	Reflected sound is converged to the auditorium	1.1	
	Soft board	Reduce reflection of sound	1,1 1 1	
	Large distance	The distance between two loud sound is small	1,1	
	High	Less reflection by obstacles		
	Q Because it has concave ceiling, uses soft board, large distance between speakers and high position for speaker		1 1	
		Total		20