ANSWER SCHEME BIOLOGY PAPER 3 4551/3

SPMRSM 2017

1

1 (a) KB0603 – Measuring Using Numbers

Score	Mark Scheme			
	Sample Answer:			
3	Concentration of sodium chloride Final mass of fish fillet/g			
	solution (M)	First experiment	Second experiment	
	0.1 M sodium chloride solution	70	74	
	0.4 M sodium chloride solution	46	44	
	0.6 M sodium chloride solution	42	40	

1 (b) (i) [KB0601 - Observation]

Score	Explanation
3	 Sample answer: 1. When the concentration of solution is 0.1 M sodium chloride solution, the final mass of fish fillet (in first reading) is 70 g and (in second reading) is 74 g. 2. When the concentration of solution is 0.6 M sodium chloride solution, the final mass of fish fillet (in first reading) is 42 g and (in second reading) 40 g. 3. When the concentration of solution is 0.4 M sodium chloride solution, the final mass of fish fillet (in first reading) is 46 g and (in second reading) 44 g.

1 (b) (ii) [KB0604 – Making inference]

Score	Explanation
3	 Sample answers: 1. The final mass of fish fillet in 0.1 M sodium chloride solution is the highest because water diffuses into the fish fillet cell by osmosis, due to 0.1 M sodium chloride solution is hypotonic / high water potential compared to fish fillet cell. 2. The final mass of fish fillet 0.6 M sodium chloride solution is the lowest because water diffuses out from the fish fillet cell by osmosis, due to 0.6M sodium chloride solution is hypertonic / low water potential compared to fish fillet cell.

1 (c) [KB0610 – Controlling Variables]

Score	Explanation			
	Sample Answer :			
	Variables	Method to handle the variable correctly		
	Manipulated variable:			
	Concentration of solution //	Use <u>different</u> concentration of sodium		
	concentration of sodium	chloride solution which are distilled water /		
	chloride solution	0.1 M, 0.4 M and 0.6 M.		
	<u>Responding variable</u> :			
	Final mass of fish fillet	Weigh / Measure and record the final mass		
		of fish fillet by using (weighing) balance		
		• Reject : spring balance		
3	Average final mass of fish fillet	Calculate and record average final mass of fish fillet by using formula = $\frac{\text{Final mass } 1 + \text{ final mass } 2}{2}$		
	Difference in mass of fish	Calculate and record difference in mass of		
	fillet	fish fillet by using formula =		
		Average final mass – initial mass		
	Constant variable:			
	Type of fish	Fix the same type of fish that is mackerel		
		• Reject : Volume of sodium chloride		
		solution, inital mass of fish fillet		
	6 ticks			

1 (d) [KB0611 – Making Hypothesis]

Score	Mark scheme
	Sample answers :
3	1. The higher/lower the concentration of sodium chloride solution, the lower/higher the final mass of fish fillet.

ANSWER SCHEME PAPER 3

SULIT

4551/3

SPMRSM BIOLOGY 2017

<u>1 (e) (i) [KB0606 – Communication]</u>

Score			Mark so	cheme		
	 Title Data recorded co Change in mass of Sample answers : 	rrectly of fish fil	– 1m - 1m let - 1m	ark ark ark		
	Concentration of sodium chloride solution (M)	Mass of fish fillet (g) Initial Final mass			Change in mass of fish	
3		mass	First	Second	Average	fillet (g)
	0.1	50	70	74	72.0	22.0
	0.4	50	46	44	45.0	- 5.0
	0.6	50	42	40	41.0	- 9.0

1 (e)(ii) [KB0612 – Plotting a graph]

Score	Explanation		
3	Axis/ <i>Paksi</i> (P) Points/ <i>Titik</i> (T) Shape/ <i>Bentuk</i> (S)	: Both axis with uniform scales.: All 3 points correctly transferred: All points connected in smooth line	

(f) [KB0608 – Interpreting Data]

Score	Mark Scheme
3	$\label{eq:sample answers:} \begin{array}{l} \underline{Sample \ answers}: \\ 1. \ \ Isotonic \ concentration \ is \ 0.33 \ M \pm 0.1 \ M. \ This \ is \ because \ the \ rate \ of \ osmosis \ is \ 0 \ g/min \ due \ to \ volume \ of \ water \ molecules \ diffuse \ in \ and \ out \ of \ the \ fish \ cells \ are \ equal \ / \ no \ net \ movement \ of \ water \ molecules. \end{array}$

1 (g) [KB0605 – Predicting]

Score	Explanation			
	 R - Prediction of final mass (equal to) 500g P1 - skin / scale impermeable P2 - water molecules cannot diffuses into and diffuses out by osmosis / osmosis process does not occur 			
	Sample answers: The final mass of life mackerel fish will equal to 500g because the skin/scale is impermeable towards water, therefore osmosis process does not occur			
	OR			
3	 R - Prediction of final mass is (equal to) 500g P1 - undergo regulatory system / regulation / osmoregulatory process P2 - high intake of water through mouth // excrete small volume of urine // excrete excess salt through urine / gills (in form of urea) 			
	<u>Sample answers</u> : The final mass of life mackerel fish will equal to 500g because they undergo regulation process which is experience high intake of water through mouth //excrete small volume of urine(in form of urea)			
	R + P1 + P2 Reject : all answer related to tonicity (hypertonic, hypotonic and isotonic) of seawater			

1 (h) [KB0609 – Defining by Operation]

Score	Mark scheme
3	Sample answers : Osmosis is a process of diffusion / movement of water molecules into mackerel fish fillet (cells) shown by the final mass/average final mass / change // difference // reduction // increment in mass of fish fillet affected by // depends on concentration of sodium chloride solution.

1 (i) [KB0602 – Classifying]

Score		Mark scheme	
	Sample answer		
	Type of solution compare	d to cell sap of potato strip]
	Hypotonic	Hypertonic	
3	0.3 % sucrose solution	0.9 % sucrose solution	
	0.5 % sucrose solution	1.2 % sucrose solution	
		2.5 % sucrose solution	
		3.0 % sucrose solution	
1			

Difference in mass of fish fillet and the concentration of sodium chloride solution Perbezaan jisim kepingan ikan dan kepekatan larutan natrium klorida

Question 2

No.	Mark Scheme	Score
2(i)		
	Sample answers:	
	 Does at temperature 37⁰ C has the highest rate of salivary amylase reaction on plain rice porridge stain/starch? Does at temperature 0°C//60°C//80°C has the lowest rate of salivary amylase reaction on plain rice porridge stain/starch? What is the effect of different temperatures on the rate of salivary amylase reaction on plain rice porridge stain/starch? Do (different) temperature affect the rate of salivary amylase reaction on plain rice porridge stain/starch? 	3

	Mark Scheme	Score
No.		
2(ii)	Sample answers:	
	 Rate of salivary amylase reaction on plain rice porridge stain/starch at 30°C/37°C/40°C is the highest. 	
	2. Rate of salivary amylase reaction on plain rice porridge stain/starch at 30°C/37°C/40°C is higher than 20°C//60°C/80°C.	
	3. Rate of salivary amylase reaction on plain rice porridge stain/starch at 20°C//60°C/80°C. is lower than 30°C/37°C/40°C.	3

No.	Mark Scheme	Score
No. 2(iii)	Mark Scheme Able to state all three variables correctly Sample answers: 1. Manipulated variable: Temperature (of waterbath / medium of reaction) 2. Responding variable: Rate of (salivary amylase) reaction / time taken for iodine solution to remain yellow	3 3
	3. <u>Controlled variable</u> :	
	starch suspension/pH of medium	

7

ANSWER SCHEME PAPER 3

SULIT

4551/3

SPMRSM BIOLOGY 2017

2(iv)		
Apparatus	Materials	
• Beakers $()$	• 1% starch suspension / plain	_
• Test tube $()$	rice porridge ($$)	3
• Syringes $()$	• Saliva suspension ($$)	
• Droppers $()$	• Iodine solution $()$	
• Glass rods $()$	• Ice cubes	
• White tiles (with grooves)	• Distilled water	
• Thermometer $()$		
• Test tube rack		
• Stopwatch ($$)		
• * water bath $()$		
() compulsory for 8A	() : compulsory for 3M	
* Bunsen burner + tripod sta	nd + wire gauze + distilled water +	
beaker = Waterbath = 1 App	aratus	
	8A + 3M	

	Mark Scheme	Score	
2(v)	Sample answer :	K's	
	Procedures:		
	1. Mouth is rinsed with warm water.		
	2. Saliva is collected by using a beaker.		
	3. The saliva is diluted with an equal volume of distilled water.	K5	
	4. 5 ml of 1% starch suspension is put into a test tube by using a	K1	
	syringe, labelled A1.	K1	
	5. 2ml of saliva is added into another test tube by using a second		
	syringe, labelled A2.	K2/K1	
	6. Test tube A1 and A2 are immersed into a beaker contained ice		
	cybe at 0°C.	K2/K1	
	7. The test tube are left for 5 minutes.		
	8. While waiting, a dry piece of white tile with groove is	K1	
	prepared.	K1	
	9. A drop of iodin solution is placed into each groove.		
	10. After 5 minutes of immersion, starch suspension from test tube	K5	
	A1 is poured into the saliva in test tube A2.	K1	
	11. The mixture is stirred by using a glass rod.	K2 /K1	
	12. The stop watch is started immediatly.		
	13. A drop of mixture from test tube A2 is placed into first groove	K1	
	on the tile contain iodine solution.	K1	
	14. The iodine test is repeated every minutes for 10 minutes.	K1	
	15. The dropper in a beaker is rinsed after each sampling.		
	16. Measure and record the time taken for iodin solution to remain	K1	
	yellow by using a stopwatch .	K5	
	17. Calculate and record the rate of enzyme reaction by using a	K3(crv)	

	formula: Rate of reaction	- 1		K3(arv)	
	Rate of reaction	Time taken for iodin solution typellow	to remain		
	 18. Steps 1-17 an water bath t temperature 19. All the data is 20. The experime 21. A graph sho temperature is 	re repeated by using different tempe hat is 37°C and 60°C (* any other with different condition) recorded in the table / tabulate data. Int is repeated twice to get the averag wing the rate of enzyme reaction a plotted .	Frature of 2 value of 2 reading . against the	K4 K1 K5 K1	3
No.		Mark Scheme			Score
2(VI)		Sample answers :			2
	(C1) (C2)				
	Temperature (⁰ C)	Time taken for iodin solution to remain yellow/time taken for the hydrolysis of starch to be completed (min)	Rate of en reaction (1/ (min ⁻¹	zyme min) /)	
	0				
	37				
	60				