Question		Answer	Mark		
Nu	ımber				
1	(a) oxidation and reduction happens at the same time				
	(b)(i)	Oxidation: $H_2S \longrightarrow 2H^+ + S + 2e$	1		
		Reduction: $Fe^{3+} + e \longrightarrow Fe^{2+}$	1		
	(ii)	+3 to +2	1		
	(c) Hidrogen sulphide		1		
	(d)	Yellow solid	1		
	(e)	Zinc/aluminium/magnesium/KI/KCl/	1		
	(f)	Add NaOH/NH ₃ solution/Potassium hexaxyano ferrate(III) solution	1		
		Green precipitate/dark blue precipitate	1		
		Total	9		

SKEMA PEMARKAHAN KIMIA KERTAS 2

Question	Answer	Mark
Number		
2 (a)(i)	$Pb(NO_3)_2 + 2NaI \longrightarrow PbI_2 + 2NaNO_3$	1 + 1
(ii)	Quantitative: 1 mole of $Pb(NO_3)_2$ react with 2 mole of NaI to produce 1 mole of PbI_2 and 2 mole of $NaNO_3$	1
	Qualitative: The reactant are $Pb(NO_3)_2$ and NaI The product are PbI_2 and NaNO ₃	1
(b)	yellow	1
(c)	Soluble in water//colourless solution	1
(d)	Mole of $Pb(NO_3)_2 = 50 \times 1/1000 = 0.05(excess)$ Mole of NaI = 50 x 1 /1000 = 0.05	1
	RatioNaI: PbI_2 2 mole:1 mole0.05mole:0.025 mole	1
	Mass of $PbI_2 = 0.025 \times [207 + 254]$ = 0.025 x 461 = 11. 525 g	1
	Total	9

-	estion	Answer	Mark
Nu 3	(a)	The increament of proton number /Pertambahan nombor proton	1
	(b)	Group: The number of electrovalens / Bilangan elektrovalens	1
		Period: Number of shells that occupied by electrons/ <i>Bilangan petala yang berisi elektron</i> .	1
	(c)	V W P R Q I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	1 + 1
	(d)(i) (ii)	R^{3+} Atom R release 3 electron to form R^{3+} ion / <i>Atom R membebaskan 3</i> <i>elektron untuk membentuk ion</i> R^{3+} .	1
			1
	(e)(i)	Helium gas is light and inert./ Gas helium ringan dan lengai.	1
	(ii)	Cannot. Hydrogen gas is flameable and it will explode with the presence of oxygen gas at high temperature.	1
		Tidak boleh.Kerana gas hidrogen mudah terbakar dan meletup dengan kehadiran gas oksigen pada suhu yang tinggi.	1
		Total	10

Ques Num		Answer	Mark
4	(a)	Resapan	1
	(b)(i)	Cecair	1
	(ii)		1
	(c)	Kurang daripada 10 minit	1
	(d)	 Proses resapan zarah-zarah kecil dan diskrit // zarah bergerak rawak zarah bergerak daripada kawasan berkepekatan tinggi ke kepekatan rendah 	1 1 1
-	(e)(i)	$= 0.1 \text{ mol } x \ 80 \text{ g mol}^{-1}$ = 8 g	1
	(ii)	$= 0.1 \text{ mol } x 24 \text{ dm}^3 \text{ mol}^{-1}$ = 2.4 dm ³	1
	(iii)	$= 0.1 \text{ mol } x \ 2 \ x \ 6.02 \ x \ 10^{23} \text{ mol}^{-1}$ = 1.02 x \ 10^{23} atom	1
		Total	10

No			Jawapan	Markah
5	a	i	Carbon dioxide /Karbon dioksida/ CO ₂	1
		ii	White	1
		iii	Lead (II) oxide/ Plumbum(II) oksida	1
	b	i	Process I: Decomposition	1
			Process II: Double decomposition	1
		ii	Reagent X: nitric acid	1
			Reagent Y: sodium hydroxide solution	1
		iii	White precipitate: lead(II)sulphate	1
		iv	$Pb^{2+} + SO_4^{2-} \longrightarrow PbSO_4$	2
		v	lead(II) ion // Pb^{2+} // H^+	1
			nitrate ion // NO ₃ ⁻ // OH ⁻	

~	Question Answer Number		Mark
6.	a)	Heat energy released when 1 mol of precipitate is formed.	1
	b)	Exothermic	1
	c) $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$		1
	d)	Mol of AgNO ₃ / NaCl	
		$= \underline{0.1 \text{ moldm}^{-3} \text{ x } 25 \text{ cm}^{3}}_{1000} = 0.025 \text{ mol}$	1
		1 mol AgNO ₃ \rightarrow 1 mol AgCl 0. 025 mol AgNO ₃ \rightarrow 0. 025 mol AgCl	

http://windyportal.blogspot.my/

	Heat of precipitation: $\Delta H = \frac{mc\Theta}{mol} = \frac{50g \times 4.2 J g^{-1.0} C^{-1} \times 8^{.0} C}{0.025 mol}$ $= -67200 Jmol^{-1} @ - 67.2 kJmol^{-1}$	1 1
e)	Energy $\Delta H = -67.2 \text{ kJmol}^{-1}$ $\Delta H = -67.2 \text{ kJmol}^{-1}$	
	 Axes with label energy and levels Correct position of reactants and products ΔH = - 67.2 kJmol⁻¹ 	1 1 1
f)	 The theoritical value of heat of neutralisation is higher. There are heat loss to surrounding when conduct the experiment. 	1

Section B

Question number		Answer		Mark
7 (a)(i	Electrode P: chloride ic Electrode Q: hydrogen			1
() Electrode P: oxygen mo Electrode Q: hydrog r: formula			1
(ii	Electrode Q: hydrogen		rogen	1
	equation: P: $2Cl^{-} \longrightarrow$ Q: $2H^{+} + 2e \longrightarrow$			1
	Confirmatory test at P: - Collect the gas liberate - insert damp blue litmu	ed from electrode	P into a test tube ,	1
	- blue litmus paper turns		ised.	1
(b)	Type of cellEThe energy changeEto	Cell X Electrolytic cell Electrical energy o chemical nergy	Cell Y Voltaic cell Chemical energy to electrical energy	1
	The terminal of P the cell / N te	Positive terminal anode: Copper Negative erminal / athode: copper	Positive terminal / cathode: copper Negative terminal / anode: aluminium	1
	Ions present in the electrolyteObservation	SO_4	²⁺ , H ⁺ ²⁻ , OH ⁻	1
		Anode: Thinner	Negative terminal/Aluminium plate: thinner	1
	b d s	Cathode: rown leposit//brown olid is leposited//thicker	Positive terminal/Copper plate: brown deposit//brown solid is deposited//thicker	1

Half equation for both electrodes		Al plate/- terminal: Al \rightarrow Al ³⁺ + 3e Cu plate//+ terminal: Cu ²⁺ +2e \rightarrow Cu		1
Name of the process occurred at both electrodes/termin	Cathode/Copj termina	plate:Oxidation per plate//negative l: Reduction		1
			Total	10 20

~	estion nber	Answer	Mark	
8	(a) (i)	Composite material, Adding steel rod into the concrete	1	
	(ii)	$nC_2H_4 \longrightarrow (C_2H_4)_n$	1+1	
		Polyethene	1	
	(iii)	 -Alloy Q/brass is harder than it pure metal/copper -the presence of zinc atom in alloy Q disrupts the orderly arrangement of copper atom These make the atomic layers of atoms harder to slide over on another -in pure metal/copper the atoms are arranged packed closely and in orderly manner. -this allow the layers of atoms are easily to slide one another 	1 1 1 1 1	
	(b)	 -Penicillin//streptomycin The student can be attacked again by the disease. -Therefore, drugs that have a higher dose should be given to him 	1 1 1	

(c)	-Cleaning agent Y in experiment II is more effective than cleaning agent	1
	X -Cleaning agent Y do not form scum in hard water therefore it can remove oily stain from the cloth -Cleaning agent X in experiment I is not effective in hard water because	1
	hard water contain high calcium ion and magnesium ion -these ions will react with cleaning agent X to formed an insoluble	1
	precipitate/scum	1
	-the formation of scum will reduces the number of cleaning agent A	1
	Cleaning agent X is soap	1
	Cleaning agent Y is detergent	1
	Total	10

No		Rubric	Mark	
9	(a)	$Zn + 2HNO_3 \rightarrow Zn(NO_3)_2 + H_2$	1	
		No. of moles of HNO ₃ = $\frac{0.2 \times 25}{1000}$ = 0.005 mol	1	
		$\begin{array}{rcl} 2 \mbox{ mol of } HNO_3 \rightarrow & 1 \mbox{ mol } H_2 \\ 0.005 \mbox{ mol } \rightarrow & 0.0025 \mbox{ mol } H_2 \end{array}$	1	
		Max volume of $H_2 = 0.0025 \text{ X } 24 = 0.06 \text{ dm}^3 = 60 \text{ cm}^3$	1	4
	(b)(i)	Rate of reaction set II higher than set I	1	
		The concentration of nitric acid / HNO_3 in set II higher than set I // No. of particles per unit volume in set II is higher.	1	
		Frequency of effective collision between hydrogen ions/ $H^{\!+}$ and zinc atom/ Zn higher in set II.	1	
	(ii)	Rate of reaction set III higher than set I	1	3
		The temperature in set III higher than set I // Kinetic energy of particles in set III is higher.	1	
		Frequency of effective collision between hydrogen ions/ H ⁺ and zinc atom/	1	

http://windyportal.blogspot.my/

	Zn higher in set II.		3
(c)	Size of Reactants:		
	1 (25-50) cm ³ of (0.1-1.0) mol dm ⁻³ of hydrochloric acid is measured and poured into a conical flask.	1	
	2 About 5.0 g of zinc granules is weigh.	1	
	3. A burette is filled with water and inverted into a basin containing water	1	
	4 The water level in the burette is adjusted to 50 cm^3 mark.	1	
	5. The granulated zinc is added into the conical flask.6. Immediately the conical flask is closed and connect it using delivery	1	
	tube to the burette	1	
	7. The stopwatch is started.	1	
	8. The conical flask is shaken steadily.	1	
	9. Record volume of hydrogen gas every 30 seconds interval.10. The experiment is repeated using 5.0 g of zinc powder to replace	1	
	5.0 g of zinc granules.	1	
	<u>Catalyst:</u>		
	1 (25-50) cm ³ of (0.1-1.0) mol dm ⁻³ of hydrochloric acid is measured and poured into a conical flask.	1	
	2 About 5.0 g of zinc granules is weigh.	1	
	3. A burette is filled with water and inverted into a basin containing water	1	
	4. The granulated zinc is added into the conical flask. 5. $5 \text{ cm}^3 \text{ of } 0.5 \text{ mol} \text{ dm}^3 \text{ conner(II)}$ subsets solution is added into the	1	
	5. 5 cm ³ of 0.5 mol dm ³ copper(II) sulphate solution is added into the Conical flask.	1	
	6. Immediately the conical flask is closed and connect it using delivery tube to the burette	1	
	7. The stopwatch is started.	1	
	8. The conical flask is shaken steadily.	1	
	9. Record volume of hydrogen gas every 30 seconds interval.10. The experiment is repeated without adding copper (II) sulphate		
	Solution.	1	
			10
			20

N	0	SKEMA	MARKAH
10	(a)	$H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + H_2O$	1
		$\frac{22 \times 0.1}{25 \times M_{b}} = \frac{1}{2}$	2
		= 0.2 moldm ⁻³	1
	(b)	Solvent L is water Solvent M is propanone, tetrachloromethane, chlorofom, Methylbenzene	1 1
		In solution A Ethanoic acid ionises in water to poduce H ⁺ ion Presence of H ⁺ shows acidic properties In solution B	1 1
		Ethanoic acid cannot ionise in water to poduce H^{+} ion No H^{+} presence cannot shows acidic properties	1 1
	(c)	 Measure 50cm³ of potassium carbonate and zinc nitrate solution Pour both the solutions into a conical flask. Shake the flask well Double decomposition reaction occurs. Zinc carbonate and potassium nitrate are produced. K₂CO₃ + Zn(NO₃)₂ → ZnCO₃ + 2KNO₃ ZnCO₃ is insoluble salt Filter the products. The residue is ZnCO₃ Put the ZnCO₃ into a test tube . Pour the hydrochloric acid into the test tube. Reactions occurs ZnCO₃ + 2HCI → ZnCl₂ + CO₂ + H2O 	
		8. Zinc chloride salt is produced.9. A pure sample zinc chloride salt can be obtained by recrystallisation	10