ANSWER SCHEME MODUL 1 PAPER 2

No			Sample answer	Mark
1	(a)	(i)	The number of protons in the nucleus of an atom.	1
		(ii)	17	1
	(b)	(i)	2.8.1 // 2, 8, 1	1
		(ii)	Reacts with water to produce hydrogen and metal hydroxide// Reacts with oxygen to form metal oxide.// Reacts with chlorine gas to produce metal chloride.	1
	(c)		Q and R	1
			because they have the same proton number but different nucleon number// same number of proton but different number of neutrons	1
	(d)	(i)	Correct no of shells Correct e arrangement	1
		(ii)	To fill advertising light bulb	1
			Total	9 m

2	(a)		Element D	1
			Atom D has achieved octet electron arrangement / 8 valence	
			electrons // atom D does not receive, release or share electrons with	1
			other atom	
	(b)		A	1
	(c)		G	1
	(d)		D, B, A, G, E	1
	(e)	(i)	Use a small piece of A // use a filter paper to dry A //The gas jar	1
			spoon is quickly placed into a gas jar	
			gas jan	
		(ii)	$4 A + O_2 \rightarrow 2 A_2O$	1
		(iii)	4 moles of A: 2 moles of R ₂ O	
		, ,		1
			1 moles of A: 0.5 moles of R ₂ O	
			Mass of $R_2O = 0.5 \times [2(7) + 16]$	1
			= 15 g	
			[r: answer without unit]	

	Total	9 m

3	(a)		Boron oxide	1
	(b)		In pure copper, the atoms can slide easily. Dalam kuprum tulen, atom-atom boleh mengelungsur dengan mudah.	1
			In bronze/alloy, tin atoms/foreign atoms disrupt the orderly arrangement of copper atoms//layers of atoms cannot slide easily	1
			Dalam aloi/bronze atom asing atau atom timah menggangu susunan teratur atom kuprum.//Lapisan atom tidak dapat bergelungsur dengan mudah	
	(c)	(i)	н сі	1
			C = C	
			н н	
		(ii)	Do not rust//oxidised	1
	(d)		Reinforced concrete Konkrit yg diperkukuhkan	1
	(e)	(i)	$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$ Correct formulae	1
			balance	1
		(ii)	urea	1
			% of N in CO(NH ₂) ₂ = $14x2 / (12+16+(14x2)+4) \times 100$	
			= 46.67%	1
			% of N in $(NH_4)_2SO_4 = 14x2/(14x2)+6+32+(16x4)$	
			= 21.5%	1
			Total	11 m

4	(a)	(i)	Chemical energy to electrical energy	1
		(ii)	Electrical energy to chemical energy	1
	(b)		e e	1
			Cell A Sel A	
	(c)	(i)	$Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu$	
			Correct ionic formula Balance equation	1
	(d)	(i)	become thicker	_
		(ii)	become thinner	1 1
	(e)	(i)	No change // blue solution remain unchanged	1
		(ii)	The rate of copper ionises at anode is the same as the rate of copper ion discharged at cathode number/concentration of Cu ²⁺ ion in the solution remain	1
			Total	10 m

5	(a)	(i)	Salts is an ionic compound formed when hydroge is replaced by metal ion or ammonium ion.	n ion in an acid	1
		(ii)			
			White solid turns brown when hot and yellow when cold Pepejal putih bertukar perang semasa panas dan kuning semasa sejuk	V	1+1
			Black solid turns brown Pepejal hitam bertukar perang		

		Lime water remain unchanged Air kapur tidak berubah	
		Lime water turns chalky <i>Air kapur menjadi keruh</i> √	
(b)	(i)	$Pb(NO_3)_2 + Na_2CO_3 \rightarrow Pb CO_3 + 2NaNO_3$	
		Correct formula of reactant and product Correct balancing	1
	(ii)	Double decomposition reaction	1
	(iv)	Filter the solution mixture using filter funnel and filter paper Rinse the residue	1
С		Add 2 cm³ of KI/Nal solution into the test tube contain 2 cm³ of Pb(NO ₃) ₂ solution and the test tube is shaken	1
		2. Yellow precipitate formed indicates the presence on Pb ²⁺ ion	1
		Total	11 m

6	(a)	Hidrogenation // Addition	1
	(b)	C ₄ H ₈ + H ₂ → C ₄ H ₁₀	1
	(c)	 Put 2 – 3 drops of bromine into two different test tubes Fill 2 cm³ of but-1-ene and 2 cm³ of hydrocarbon Y in the test tubes with stopper. But-1-ene decolourise brown bromine water but in hydrocarbon Y remain unchanged 	1 1 1
		 Put 2 – 3 drops of acidified potassium manganate(VII) solution into two different test tubes Fill 2 cm³ of but-1-ene and 2 cm³ of hydrocarbon Y into the test tubes with stopper. Shake the test tubes But-1-ene decolourise purple acidified potassium manganate(VII) solution but in hydrocarbon Y purple colour remain unchanged 	
	(d)	Able to calculate number of mole with unit 0.05 mol	1
		Able to calculate mass with unit Ratio: 1 mol Y \rightarrow 4 mol CO ₂ 0.5 \rightarrow ? $\frac{0.5}{1}$ x 4 = 2 mol	1
		Or 1 mol Y : 4 mol CO ₂ 0.5 mol : 2 mol CO ₂	
		Mass of CO ₂ 2 x 44 g // 88 g [r: answer without unit]	1

(e)	Isomer	
	H - C = C - C - C - H $H - H H$ $H + H$ $H + H$	1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
		1
		Total 11 m

7	acid P : hydrochloric acid/ sulphuric acid/ nitric acid.	1
	Acid P/ hydrochloric acid/ sulphuric acid/ nitric acid is a strong acid// ionize completely in water	1
	to produce high concentration of H ⁺ ions.	1
	It will cause the pH value to be lower (smaller).	1
	acid Q : ethanoic acid.	1
	Acid Q/ ethanoic acid is a weak acid // Ionise partially in water	1
	to produce low concentration of H ⁺ ions.	1
	Hence, pH value is higher (bigger)	_
	NH₄OH	1
	neutralize the acid secreted by ant	1 1
	$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$	
	Correct formula reactants and products Balance equation	1 1
	Calculation: Mole of H ₂ SO ₄	
	$\frac{MV}{1000} = \frac{0.5 \times 50}{1000}$	1
	= 0.025 mole	1
	Ratio 1 mole of H ₂ SO ₄ : 2 mole of NaOH 0.025: 0.05	1
	Correct Molarity of NaOH with unit:	
	n= <u>0.05 X 1000</u> 25	
	= 2.0 mol dm ⁻³ [r: answer without unit]	1

	mol dm ⁻³ / halved / decrease halved / less halved hydrochloric acid is monoprotic/monobasic acid.	1 1
	sulphuric acid is a diprotic acid / dibasic acid	1
	Total	20 m

8	(a)	1. average rate = $\frac{50}{55}$	1
		2. = 0.909//0.91 cm3 s-1 [r: answer without unit]	1
	(b)		
		Energy Experiment II 2H ₂ O ₂ Experiment III 2H ₂ O + O ₂	
		1.y axis labeled energy 2.both curve drawn correctly with label 3.energy level labeled with reactant and products [a: exo or endo] 4.activation energy labeled correctly	1 1 1
	(c)	Experiment I and Experiment II	
		Rate of reaction of experiment II is higher than experiment I	1
		Experiment II use higher concentration of hydrogen peroxide	1
		the number of Hydrogen peroxide molecules/reactant particles per unit volume in experiment II is higher.	1
		Frequency of collision between Hydrogen peroxide molecules of experiment II become higher	1
		Frequency of effective collision between Hydrogen peroxide molecules/reactant particles of experiment II become higher	1
		Experiment II and Experiment III 6. Rate of reaction of experiment III is higher than experiment	

	II 7. Catalyst that is Manganese(IV) oxide present in experiment III	1
	8. Manganese(IV) oxide lower the activation energy of the reaction in experiment III	1
	More colliding hydrogen peroxide molecules easily overcome the lower activation energy in experiment III	1
	Frequency of effective collision between Hydrogen peroxide molecules of experiment III become higher	1
		1
(d)	1. number of mole of H2O2 = 0.5 x 30 // 0.015 1000	1
	2. 2 mole of H2O2 produce 1 mole of O2	1
	3. number of mole of O2 = 0.015 // 0.0075	1
	4.volume of O2 = 0.0075 x 24 dm3 //0.18 dm3 //180 cm3 [r: answer without unit]	1
	Total	20 m

9	(a)	(i)	Ionic compound: W and X // covalent compound: V and X	1+1
		(ii)	Ionic compound	
			1. Correct charge of ion	1
			2. correct number of electron in the shell for each ion	1
			3. contain nucleus	1
			 Explanation Electron arrangement of an atom of element W is <u>2.8.1</u> 2 Atom W <u>donates</u> one electron each to achieve the <u>stable</u> electron arrangement which is 2.8 2 W ion, <u>W</u>⁺ is formed Electron arrangement of atom X is <u>2.6</u> Electrons from atom W are transferred to an atom of <u>X</u> Atom X receives <u>TWO</u> electrons to achieve the <u>stable</u> electron arrangement which is 2.8. W ion, <u>X</u>²-is formed The W ion, <u>W</u>⁺ and X ion <u>X</u>²-, formed are <u>attracted</u> to one another to form an <u>ionic</u> compound, <u>W</u>₂X The strong <u>electrostatic</u> forces between the opposite-charged ions is called <u>ionic</u> bond. Any 7 points	7 marks
			Any physical state	1 mark

Covalent bond	
 Atom V has <u>four</u> valence electrons, with an electron arrangement of <u>2.4</u> It needs <u>four</u> more electrons to achieve the <u>stable</u> electron arrangement One atom of X contributes 2 electrons for <u>sharing</u> Atom Xhas <u>SIX</u> valence electrons, with an electron arrangement of <u>2.6</u> It needs <u>two</u> more electron to achieve the <u>stable</u> electron arrangement One atom of v share a pair of electrons with <u>two</u> atoms of x Covalent compound of <u>VX2</u> is formed 	7 marks
Any physical state	1 mark
1. correct number of electron for each atom combined 2. contain nucleus 3. correct the position (share the electron + shell)	

b	i	Substance Y is glacial ethanoic acid // gas hydrogen chloride	1
		Solvent Z is tetrachloromethane//ethanol//any organic solvent	1
	ii	Solution I	
		Substance Y dissolve in water	1
		The ions in water dissociate and move freely	1
		Solution II	
		Substance Y do not dissolve	1
		Exist as neutral covalent molecules	1
			Max 5
		Total	20 m

Que	stion	No	Mark Scheme	Marks
10	(a)		elements C : H : O	
			mass/g 64.9:13.5:21.6	
			no of mole 5.4:13.5:1.35	1
			ratio 4 : 10 : 1	1
			C ₄ H ₉ OH	1
			butanol	1 1
			butanoi	'
	(b)	From	glucose:	
		Proce	255	
	Process Fermentation			1
		. 0		·
		<u>Step</u>		
			cm ³ glucose solution is added with yeast into a conical flask	1
		• The	Left for 3 days product is then purified by fractional distillation	1
		• 1116	e product is their purmed by fractional distillation	'
		Chem	nical equation	
			$O_6 \rightarrow 2C_2H_5OH + 2CO_2$	1
	From ethene:			
	Process Hydration // addition reaction			1
	Hydration // addition reaction			·
		<u>Step</u>		
	A mixture of ethene and water vapour/ steam are passed over phosphoric acid as the catalyst			
			1	
	At temperature of 200 °C and areasymptotics			1 1+1
	At temperature of 300 °C and pressure of 60 atm			1+1
			nical equation	
		C ₂ H ₄	+ $H_2O \rightarrow C_2H_5OH$	
				1
	(c)	•	Name any suitable alcohol	1
	(0)		Name any suitable carboxylic	1 1
			Mix alcohol and carboxylic acid (same volume)	1 1
			In round bottom flask	1
		•	Add a few drops of sulphuric acid concentrated	1
		•	Heat the mixture in bath bath under reflux	1
			Tota	l 20 m