SULIT 4541/2 Kimia Kertas 1 Kertas 2 Ogos/Sept 2008 Skema Pemarkahan ## PERSIDANGAN KEBANGSAAN PENGETUA-PENGETUA SEKOLAH MENENGAH MALAYSIA (PKPSM) CAWANGAN MELAKA #### PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2008 #### SKEMA PEMARKAHAN #### **KIMIA** Kertas 1 and Kertas 2 Kertas soalan ini mengandungi 12 halaman bercetak 4541/2 [Lihat sebelah ## SKEMA PERMARKAHAN KIMIA 4541/1 | No
soalan | Jawapan | |--------------|---------|--------------|---------|--------------|---------|--------------|---------|--------------|---------| | 1 | В | 11 | В | 21 | D | 31 | C | 41 | D | | 2 | D | 12 | A | 22 | C | 32 | D | 42 | В | | 3 | D | 13 | D | 23 | В | 33 | С | 43 | С | | 4 | A | 14 | D | 24 | A | 34 | A | 44 | A | | 5 | С | 15 | A | 25 | D | 35 | A | 45 | С | | 6 | В | 16 | A | 26 | D | 36 | С | 46 | D | | 7 | С | 17 | D | 27 | A | 37 | A | 47 | D | | 8 | A | 18 | С | 28 | В | 38 | В | 48 | D | | 9 | A | 19 | С | 29 | В | 39 | D | 49 | A | | 10 | A | 20 | C | 30 | C | 40 | D | 50 | D | SMS MUZAFFAR SYAH , MELAKA http://edu.joshuatly.com/ #### PAPER 2 #### Section A | 1 | (a) | | Acetamide / CH ₃ CONH ₂ | | 1 | |---|-----|-------|--|---|---| | | (b) | | Sublimation | | 1 | | | (c) | (i) | 1. Temperature at which liquid changes into a solid | | | | | | | 2. at a particular pressure | | 1 | | | | (ii) | 82°C | | 1 | | | | (iii) | 1. Heat loss to the surrounding | 1 | | | | | | 2. balanced by heat energy liberated when particles attract one Another // when liquid change to solid | 1 | 2 | | | | | | | | (d) (i) | • | proton | |----|----------| | 49 | neutron | | 0 | electron | All correct - 1 4 + 3 = 71 (ii) - [Able to draw a diagram that shows the following information] (e) 2 1. Diagram of combustion tube containing copper oxide and is - clamp using retort stand 2. Dry hydrogen is flow into the combustion tube, excess of hydrogen is flow out and copper oxide is heated - 3. Label hydrogen, copper oxide and heat | 2 | (a) | Silicon / Chlorine / Argon | 1 | |---|-----------------|--|-----| | | (b)(i) | 2.8.8 | 1 | | | (ii) | it has achieved the stable octet electron arrangement | 1 | | | (c) | Used as semiconductor to make diodes/transistor | 1 | | | (d) (i)
(ii) | Atomic radius/size decreases -The number of proton increases across the period from sodium to argon hence the positive nuclear charge also increases -thus, stronger attraction force between the nucleus and the electrons in the first three occupied shells - causing the electron to be pulled closer to the nucleus, therefore the atomic radius decreases | 1 1 | | | (e)(i) | $2 \text{ Na} + \text{Cl}_2 \longrightarrow 2 \text{ NaCl}$ | 1 | | | (ii) | Ionic bond | 1 | | 3 | (a) | Chemical energy to electrical energy | 1 | | |---|---------|---|--------|----| | | (b)(i) | Zinc | 1 | | | | (ii) | Zink is more electropositive than iron. | 1 | | | | (c) | Green to colourless | 1 | | | | (d) | Allow ions moving through | 1 | | | | (e) | From zinc to iron electrode | 1 | | | | (f) | Zinc Zinc donate electron to iron. | 1 | | | | (g) | $Zn \rightarrow Zn^{2+} + 2e$ | 1 | | | | (h) | No of mol = $0.056 / 56$ | | | | | | No of atoms = $0.056/56 \times 6.02 \times 10^{23}$ | 1 | | | | | | | 10 | | 4 | (a) | H H H | 1 | | | | (b) | $C_3H_7OH + 5O_2 \rightarrow 3CO_2 + 4H_2O$ | 1 | | | | (c) (i) | Pleasant smell / fruity smell | 1 | | | | (ii) | Ethanoic acid | 1 | | | | (d)(i) | Oxidation | 1 | | | | (ii) | Orange to green | 1 | | | | (e) (i) | $H H H$ $I I I$ $H \sim C = C \sim C - H$ I | 1 | | | | | н | | | | | (ii) | 1,2 dibromo propane | 1 | | | | (iii) | [Able to draw and labeled the diagram correctly] | | | | | | Functional diagram Label the diagram | 1
1 | | | | | 2. Label the diagram | • | | | | | | | 10 | | 5 | (a) | | Correct formula of reactants and products Balance chemical equations. | 1
1 | 2 | |---|------------|---------------------|--|--------|------------------| | | (b) | (i) | Mg + 2HCl \rightarrow MgCl ₂ + H ₂
Experiment I : 50cm ³ / 3min // 16.67 cm ³ min ⁻¹ // 16.7 cm ³ min ⁻¹ | 1 | | | | | | Experiment II : 50 cm ³ /5 min // 10.00 cm ³ min ⁻¹ //10.0 cm ³ min ⁻¹ | 1 | 2 | | | | (ii) | 1. Rate of reaction in experiment I is higher than experiment II | 1 | 2 | | | | | 2. Hydrochloric acid in experiment I more concentrated | 1 | | | | | | 3. Number of particles / H ⁺ ion increases | 1 | | | | | | 4. Frequency of effective collision increases | 1 | 4 | | | (c) | | Volume of hydrogen gas / cm³ I II Time / min [Labeled of axes are correct] [The curves are correct] | 1 | 2 10 | | 6 | (a) | (i) | Acidified potassium manganate (VII) | 1 | 1 | | • | (b) | (i)
(ii) | Green colour of iron(II) sulphate turn to yellow
Purple colour of acidified potassium manganate (VII) turn
colourless | • | 1
1 | | | (c)
(d) | From (i) (ii) (iii) | relectrode A to electrode B through external circuit $Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$ + 2 to +3 oxidation | | 1
1
1
1 | | | (e) | (i)
(ii) | MnO ₄ + 8H ⁺ + 5e ⁻ → Mn ²⁺ + 4H ₂ O
Acidified potassium dichromate(VI)/bromine water/any suitable
oxidising agent | e | 1 | | | (f) | To al | llow the flow of ions | | 1 | | | | | SMS MUZAFFAR SYAH , MELAKA | | 10 | ## **SECTION B** | No. 7(a) (i) | Suggested Answer Chlorine: 2.8.7 | M | arks | |---------------------|---|----------|------| | (ii) | Carbon : 2.4 - chlorine atom has 7 valence electrons needs one electron | 1 | 2 | | | - carbon atom has 4 valence electrons ,hence it needs 4 more electron | 1 | | | | - so that each atom achieves stable octet electron arrangement | 1 | | | | - share electrons between them | 1 | | | | - four chlorine atoms, each contributes 1 electron // [diagram] | 1 | | | | - one carbon atom contributes 4 electrons //[diagram] | 1 | | | | - four single covalent bonds are formed | 1 | | | | - the molecular formula is CCl ₄ | 1 | | | | - diagram [no. of electrons in all the occupied shells in the carbon and chlorine atoms - correct] [sharing of 4 pairs of single covalent bonds between 1 | 1
1 | 10 | | | carbon atom and 4 chlorine atoms] | | | | (iii)
(b) | Colourless liquid [Procedures of the experiment] | 1 | 1 | | | eg.1. Scoop a quarter spatula of magnesium chloride and add into a test tube. | 1 | | | | 2. Measure 2-5 cm ³ of distilled water and add to the test tube containing the magnesium chloride. | 1 | | | | 3. Stopper the test tube and shake well. | 1 | | | | 4. Repeat Steps 1 to 3 using [named organic solvent eg diethyl ether] | 1 | | | | 5. Observe the changes and record them in a table | 1 | | SMS MUZAFFAR SYAH , MELAKA http://edu.joshuatly.com/ | NO. | | Rubric | Mark | |-----|-------------|--|------------------------------| | 8 | (a)(i) | Substance which ionises in water | 1 | | | | 2. to produce hydrogen ion | 1 2 | | | (ii)
(b) | pH value of ethanoic acid is higher than sulphuric acid ethanoic acid is a weak acid; sulphuric acid is a strong acid ethanoic acid ionises partially in water to produce lower concentration of hydrogen ion sulphuric acid ionises completely in water to produce higher concentration of hydrogen ion Number of mole BaCl₂ = (0.5 x 50)/1000 = 0.025 mol From the equation, 1 mol of BaCl₂ produces 1 mol BaSO₄ // 0.025 mol BaSO₄ | 1
1
1
1 4
1 | | | | Mass = 0.025 x 233
= 5.825 g
[Suggested answer] | 1 4 | | | | Measure 50 cm³ of barium chloride 0.5 mol dm ³ in a measuring cylinder. Pour the solution into the beaker. Measure 50 cm³ of sodium suphate 0.5 mol dm ³ in a measuring cylinder. Pour the solution into the beaker containing barium chloride solution. Stir the mixture with glass rod and rinse with distilled water. Filter the precipitate. Dry the salt using/between two pieces of filter paper. | 1
1
1
1
1
1 7 | | | (c) | Calcium carbonate / lime stone // Calcium oxide / lime Lime/lime stone reacts with acidic soil neutralise acidity in soil | 1
1
1 3
20 | # SECTION C | 9 | (a) | (i) | Tin, a foreign atom in bronze have different size from copper | 1 | |---|-----|------|---|---------------| | 9 | (a) | (1) | atom | 1 | | | | | 2. disrupt the orderly arrangement of copper atoms | 1 | | | | | 3. prevent the layers of metal atoms from sliding over each other | | | | | | easily4. makes bronze harder and stronger then copper. | 1 1 | | | | | 4. makes bronze harder and stronger then copper. | [4 | | | | | | marks] | | | | (ii) | Apparatus & materials: | | | | | | Bronze block, copper block, steel ball bearing, 1 kg weight, meter ruler, retort stand with clamp, cellophane tape and thread. | | | | | | - a meter ruler is clamped to a retort stand | 1 | | | | | - a steel ball bearing is placed on the copper block by using cellophane tape. | 1 | | | | | - 1 kg weight is hung [50 cm] above the copper block. | 1 | | | | | - the weight is dropped onto the ball bearing on the copper block | 1 | | | | | - the diameter of the dent is measured. | 1 | | | | | the experiment is repeated using a bronze block to replace the copper block. | 1 | | | | | - the diameter of the dents on the bronze block is smaller than the diameter on the copper block | 1 | | | | | - shows that bronze / alloy is harder than pure metal/ copper | 1 | | | | | - [ball bearing is put on top of metal/alloy block, meter ruler is clamped to the retort stand, the 1 kg weight is hung above the block | 1 | | | | | - [label weight, copper / bronze block, ball bearing, meter ruler] | 1 | | | | | | [10
marks] | SMS MUZAFFAR SYAH , MELAKA | | | (b) | | | |-----|--|--------------------| | | Type of food Example additive | | | | 1. Flavourings Monosodium glutamate/
aspartame/sugar/salt/vinegar/[ester] | 1+1 | | | 2. Antioxidants Ascorbic acid/Sodium citrate/ | 1+1 | | | 3. Preservatives Salt/Sugar/Vinegar/Sodium nitrite/Sodium nitrate/Benzoic acid/Sodium benzoate | 1+1
[6
marks | | No. | Suggested Answer | Ma | rks | |---------------------|--|----|------------------------------| | 10 a(i) (ii) | correct name of insoluble salt heat change/absorbed/released when one mole of a precipitate is formed from its ions in aqueous solution. | 1 | 3 | | b | [correct chemical / ionic equation] eg. AgNO ₃ + NaCl AgCl + NaNO ₃ | 1 | | | | [Materials] [Apparatus] [Procedures] | 1 | | | | 1. 20 cm ³ of 0.5 moldm ⁻³ silver nitrate solution is measured using a measuring cylinder and is poured into a plastic cup. | 1 | | | | 2. 20 cm ³ of 0.5 moldm ⁻³ sodium chloride solution is measured using another measuring cylinder and is poured another plastic cup. | 1 | | | | The initial temperatures of both these solutions are measured after the solutions are left aside for a few minutes. The additional black to a left as it and data silver nitrate. | 1 | | | | 4. The sodium chloride solution is added to silver nitrate solution.5. The mixture is stirred with a thermometer.6. The highest temperature obtained is measured and | 1 | | | | recorded. | 1 | | | | [Results] Initial temperature: } | | | | | Highest temperature : } Im | 1 | | | | Increase in temperature: Highest temp.—Initial temp.—SMS MUZAFFAR SYAH, MELAKA | 1 | V 1 1 1 1 1 1 1 1 1 1 | | | 12 | | | |---|--|----------------|-------| | | Calculation] eg - calculation of mole - calculation of heat released - calculation of Heat of Precipitation | 1 1 1 | | |] | Energy level diagram] eg. - axis labeled energy with two different energy levels - correct energy level for heat of Precipitation | 1 1 | | | [| Precautionary measures] eg. - add quickly and carefully - stir the mixture throughout the activity - insulate the cup / cover the plastic cup containing the solution | Any 2
1 + 1 | max17 | | | | | 20 | END OF MARKING SCHEME 4541/3 Kimia Kertas 3 Ogos/Sept. 1 1/2 jam ## PERSIDANGAN KEBANGSAAN PENGETUA-PENGETUA SEKOLAH MENENGAH MALAYSIA (PKPSM) CAWANGAN MELAKA #### PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2008 #### **KIMIA** Kertas 3 Satu jam tiga puluh minit #### PERATURAN PEMARKAHAN SMS MUZAFFAR SYAH, MELAKA http://edu.joshuatly.com/ | Qu | estion | Details | Score | |----|--------|--|-------| | 1. | (a) | Able to state three observations for the experiment accurately. Sample answer: 1. White fumes released 2. Mass of crucible content increase // Reading of electronic balance increase 3. White solid / powder formed 4. Bright flame | 3 | | - | | Able to state two observations for the experiment accurately. | 2 | | | | Able to state one observation for the experiment accurately. | 1 | | | | Able to state three inferences related to the observations accurately. | | | | | Sample answer: 1. Magnesium oxide formed 2. Magnesium combine with oxygen 3. Magnesium being oxidized 4. Magnesium reactive toward oxygen | 3 | | | | Able to state two inferences related to the observations accurately. | 2 | | | | Able to state one inference related to the observation accurately. | 1 | | | | | | SMS MUZAFFAR SYAH , MELAKA http://edu.joshuatly.com/ | (b) | Able to: i. calculate the mass of magnesium ii. calculate the mass of oxygen iii. show steps to determine empirical formula. Sample answer: Mass of magnesium: (36.05 – 35.50) g = 0.55 g Mass of oxygen: (36.42 – 36.05) g = 0.37 g Element Number of mole 0.55 / 24 0.37 / 16 = 0.023 Ratio of mole 0.023 / 0.023 Ratio of mole 0.023 / 0.023 = 1 Empirical formula = MgO | 3 | |------------|--|---| | | Able to give any two answers above | 2 | | | Able to give any one answer above | 1 | | | | | | (c)
(i) | Able to state Cannot / No - score 1 Able to give the accurate reasons - score 2 Sample answer: Cannot. Copper (less reactive than / below) hydrogen in Reactivity Series of metals. | 3 | | | Able to state Cannot / No - score 1 Able to give the correct reasons - score 1 Sample answer: Cannot. Copper (less reactive than / below) hydrogen. | 2 | | | Able to state | | |------|--|---| | Ì | Cannot / No | | | | - score 1 | | | | Or | 1 | | | Able to give an idea - score 1 | | | | | | | (c) | Able to give accurate suggestion | | | (ii) | Sample answer: | 3 | | | Reduction reaction of copper(II) oxide using hydrogen gas | | | | Able to give correct suggestion | | | | | 2 | | | Sample answer: | 2 | | | Combustion of copper(II) oxide in hydrogen gas | | | | Able to give an idea | | | | Communication of the communica | 1 | | | Sample answer: | | | | Combustion of metal in hydrogen gas | | | | Able to give all three correct answers. | | | | Samuela anaucan | | | (d) | Sample answer: i. Substance that being oxidized: Hydrogen / H ₂ | 3 | | | ii. Substance that being reduce: Copper(II) oxide / CuO | | | | iii. Reducing agent: Hydrogen / H ₂ | | | | Able to give two correct answers. | 2 | | | Able to give one correct answers. | 1 | | | | | | | | | | 2. | (a)
(i) | Sample answer: First Titration Second Titration Third Titration | Initial burette readings 0.20 cm ³ 1.55 cm ³ 3.00 cm ³ | Final burette readings 24.30 cm ³ 25.60 cm ³ 27.20 cm ³ | 3 | |----|------------|--|---|--|---| | | | # readings to two decir # readings to one decir Sample answer: First Titration Second Titration Third Titration | nal point without unit | Final burette readings 24.30 25.60 27.20 | 2 | | | | First Titration Second Titration Third Titration Able to record three to | Or Initial burette readings 0.2 1.5 / 1.6 3.0 five readings correctly | Final burette readings 24.3 25.6 27.2 | 1 | | | | | , | | | | (a) | Able to construct a table of the seadings in the readings, Final be acid. 2. Transfer all burets 3. With unit Sample answer: | table : Titra
urette readin | tion number,
gs and Volum
om (a) (i) corre | Initial burette e of sulphuric ectly | 3 | |------|--|--------------------------------|--|--------------------------------------|---| | 1. | Titration number | <u>l</u> | 2 | 3 | | | (ii) | Final burette readings / cm ³ | 24.30 | 25.60 | 27.20 | | | | Initial burette readings / cm ³ | 0.20 | 1.55 | 3.00 | | | | Volume of sulphuric acid / cm ³ | 24.10 | 24.05 | 24.20 | | Able to construct a table that contains the following information. - 1. Headings in the table: Titration number, Initial burette readings, Final burette readings and volume of sulphuric acid. - 2. Transfer all burette readings from (a) (i) correctly - 3. Without unit or unit at data ## Sample answer: | Titration number | 1 | 2 | 3 | |--------------------------|-------|-----------|-------| | Final burette readings | 24.30 | 25.60 | 27.20 | | Initial burette readings | 0.20 | 1.55/1.60 | 3.00 | | Volume of sulphuric acid | 24.10 | 24.05 | 24.20 | | Titration number | 1 | 2 | 3 | |--------------------------|-----------------------|-----------------------|-----------------------| | Final burette readings | 24.30 cm ³ | 25.60 cm ³ | 27.20 cm ³ | | Initial burette readings | 0.20 cm ³ | 1.55 cm ³ | 3.00 cm ³ | | Volume of sulphuric acid | 24.10 cm ³ | 24.05 cm ³ | 24.20 cm ³ | Or Or | Titration number | 1 | 2 | 3 | |--------------------------|------|---------|------| | Final burette readings | 24.3 | 25.6 | 27.2 | | Initial burette readings | 0.2 | 1.5/1.6 | 3.0 | | Volume of sulphuric acid | 24.1 | 24.0 | 24.2 | | | Able to construct a table that contains the following information. 1. Headings in the table | | |-----|--|------| | | Sample answer: | 1 | | | Final burette | ר ור | | | readings | | | | Initial burette readings | | | | Volume of sulphuric acid | | | | | | | (b) | Able to state the colour change accurately. Sample answer: The colour of phenolphthalein change from pink to colourless | 3 | | | Able to state the colour change inaccurately. | | | | Sample answer: Change to colourless | 2 | | | Able to state an idea about the observation. The colour changes // pink | 1 | | | Able to give the operational definition accurately by stating t following three information. 1. Volume of sulphuric acid added 2. Neutralize sodium hydroxide solution completely 3. Phenolphthalein change from pink to colourless | he 3 | | (c) | Sample answer: The end point of neutralization is the volume of sulphuric ac added to neutralize the sodium hydroxide solution completely at determined by the colour change of phenolphthalein from pink colourless. | nd | | | added to neutralize the sodium hyd The end point of neutralization | is the volume of sulphuric acid | 2 | |-----|---|--|---| | | Able to give the operational definit of the information above. Sample answer: The end point of neutralization is added. The end point of neutralization is being neutralize completely. | the volume of sulphuric acid | 1 | | | | | | | (d) | Able to make correct classification Sample answer: Strong acid Phosphoric acid Hydrochloric acid Nitric acid | Weak acid Acetic acid Propanoic acid Butanoic acid | 3 | | | on for any four acids. | Able to make correct classification | | |---|------------------------------------|---|---| | | | Sample answer: | | | | Weak acid | Strong acid | | | 2 | Acetic acid | Phosphoric acid | | | | Butanoic acid | Hydrochloric acid | | | | Nitric acid | Propanoic acid | | | | on for any one acids. | Able to make correct classification Sample answer: | | | 1 | Weak acid | Strong acid | | | • | Acetic acid | Phosphoric acid | | | | A rectic dela | Thosphore deld | | | | | | | | | | | | | 3 | problem accurately and response is | Able to give the statement of the print in question form. | 3 | | | ropane and propene using acidified | Sample answer: | | | 2 | problem correctly. | Able to give the statement of the po | | | | | Sample answer: | | | | | How to differentiate between liqui | | | | | How to identify propane and prop | | | | of the problem correctly. | Able to give an idea of statement of | | | 1 | | | | | | | Sample answer: | | | | entiate alkane and alkene? | How to identify/determine/differen | | | | entiate alkane and alkene? | How to identify/determine/differen | | | | Able to state the three varia | bles correctly. | | |-----|---|--|---| | (b) | Manipulated variable: Responding variable: Constant variable: | Sample answer: Hexane and hexene Observation when hexane and hexene react with acidified potassium manganate.(VII) Volume of hexane and hexene | 3 | | | Able to state any two variab | les correctly | 2 | | | Able to state any one variate | bles correctly | 1 | | | | | | | (c) | the responding variable acceptable hiquid P and Q. Sample answer: | b between the manipulated variable and urately by stating the colour change in ble colour of acidified potassium is hexene // vice versa | 3 | | | Able to state the relationship the responding variable access hexene or hexane only. Sample answer: | between the manipulated variable and urately by stating the colour change in arple colour of acidified potassium | 2 | | | Able to state the idea of hyposestate Alkene will change the color manganate(VII) | | 1 | | (d) | Able to give adequate list of Sample answer: Liquid P, Liquid Q, acidified Test tube, dropper, stopper | materials and apparatus. I potassium manganate(VII) solution, | 3 | | | Able to give a list of materials and apparatus. | | |-----|---|---| | | Sample answer: Liquid P, Liquid Q, acidified potassium manganate(VII) Test tube, stopper. | 2 | | | Able to give an idea of materials and apparatus. | | | | Sample answer: Liquid P, Liquid Q, potassium manganate Beaker / any suitable container | 1 | | | Able to state the following five stance | | | (e) | Able to state the following five steps: Sample answer: Some liquid P and liquid Q are poured into two different test tubes. Three drops of acidified potassium manganate(VII) are added into the test tubes. The test tubes are closed with stoppers. The mixtures are shaken. The observations are recorded. | 3 | | | Step 1, 2, 4 and 5 | 2 | | | Step 1 and 2 | 1 | | | | | | (f) | Able to exhibit the tabulation of data that includes the following four information: 1. Heading liquid 2. Two liquid 3. Heading for observation 4. 2x3 or 3x2 table | 3 | | | Sample answer: Liquid Observation Liquid P Liquid Q | 3 | | | Able to exhibit the tabulation of data that includes the following four | | |---|---|---| | | information: | | | | 1. Heading for liquid | | | | 2. One liquid | | | | 3. Heading for observation | | | | 4. $2x3$ or $3x2$ table | | | | | 2 | | | Sample answer: | - | | | Liquid Observation | | | | Liquid P | | | | Elquid I | | | | | | | | | | | | | | | | Able to exhibit the tabulation of data that includes the following four | | | | information: | | | | 1. Heading for liquid | | | | 2. Heading for observation | | | | 3. 2x3 or 3x2 table | | | | | 1 | | 1 | Sample answer: | 1 | | | Liquid Observation | END OF MARK SCHEME | | | | DITO OF PARAMETORIAN | |