PENTAKSIRAN DIAGNOSTIK AKADEMIK SBP 2013

CHEMISTRY http://cikguadura.wordpress.com/

SKEMA JAWAPAN KERTAS 1

1	A	11	A	21	D	31	В	41	D
2	D	12	A	22	В	32	D	42	В
3	A	13	С	23	A	33	В	43	D
4	С	14	D	24	С	34	D	44	A
5	D	15	В	25	С	35	D	45	В
6	С	16	В	26	С	36	С	46	С
7	С	17	A	27	A	37	D	47	D
8	A	18	A	28	В	38	В	48	В
9	С	19	С	29	A	39	D	49	В
10	D	20	С	30	В	40	A	50	С

KERTAS 2

SECTION A

No		Rubric	Mark
1(a)	(i)	Diffusion r. diffuse	1
	(ii)	Ion	1
	(iii)	Potassium manganate(VII) is made of tiny and discrete particles/ions	1
		 The particles are constantly moving/vibrate and rotate The particles move into spaces between agar particles// there are spaces between agar particles// the particles 	1
		move from high concentration area to low concentration region	1
(b)	(i)	Proton // neutron r. p/n	1
	(ii)	Atoms that have the same proton number but difference	1
	(iii)	nucleon number. 8	1
	(v)	To estimate the age of fossil	1
		TOTAL http://cikguadura.wordpress.com/	9

No			Rubric	Mark
2 (a)(i)	2.8.2			1
(ii)	Group 2	2, Period 3		1
(b)	Gas			1
(c)	Chlorin	ne/ Cl		1
(d) (i) (ii)	Al ₂ O ₃ Ionic		r: ionic compound	1 1
(e)	Mass	Mg 2.4 g	Cl 7.1 g	1
	Mol	0.1	0.2	1
	Ratio	1	2	
	Formul	a : MgCl ₂		1
			TOTAL	9

No	Rubric	Mark
3 (a)	(i) ionic compound formed when the hydrogen ion from an acid is replaced by a metal ion or ammonium ion	1
	(ii) Blue	1
(b)	(i) Oxygen	1
	(ii) NO ₂	1
	(iii) CuO	1
(c)	(i) Copper(II) ion	1
	(ii) Copper(II) carbonate / CuCO ₃	1
(d)	1. Mol of HCl = 0.5 x 20 /1000// 0.01 mol	1
	2. Mol of $H_2O = 0.005$	1
	3. No. of H_2O molecules = 0.005 x 6.02 x 10 23 // 3.01 x 10 21	1
	TOTAL	10

No	Rubric	Mark	
4 (a)	Heat change / released when one mole of copper is displaced from/copper(II) sulphate solution by zinc		
(b)	Polystyrene is a heat insulator / / to reduce heat loss to surroundings r: to prevent	1	
(c) (i)	No of moles of Copper(II) ion = $\frac{0.2 \times 50}{1000}$ // 0.01 mol	1	
(ii)	1. 1 mol of Cu is displaced produce 210 kJ heat	1	
	2. $0.01 \text{ mol of Cu} = 0.01 \text{ x } 210 \text{ kJ}$		
	// 2.1 kJ / 2100 J	1	
(iii)	$2100 \text{ J} = 50 \text{ x } 4.2 \text{ x } \theta \text{ //} \theta = 10^{\circ} \text{C}$	1	
(d) (i)	More than -210 kJ mol ⁻¹ / Higher / Increases	1	
(ii)	Magnesium is more electropositive than zinc // magnesium is higher than zinc in electrochemical series // distance between Mg – Cu is further than Zn-Cu in electrochemical series	1	
(e)	Label energy and diagram has 2 different energy levels	1	
	for exothermic reaction2. Balanced chemical / ionic equation, ΔH is written	1	
	Energy		
	TOTAL	10	

No	Rubric	Mark
5(a) (i)	Hydrogen	1
(ii)	Place/ insert a lighted splinter into a test tube Produce "pop" sound	1 1
(b)(i)	Experiment 1: Average rate of reaction: = 35/140 cm ³ s ⁻¹ or 0.25 cm ³ s ⁻¹	1
	Experiment II: Average rate of reaction: = 35/120 cm ³ s ⁻¹ or 0.29 cm ³ s ⁻¹	1
(ii)	Rate of reaction in Experiment II is higher	1
b(iii)	In Experiment II, 1. Size of zinc in is smaller// Total surface area of zinc in Experiment II is bigger	1
	 Frequency of collision between zinc atom and hydrogen ion is higher 	1
	3. Frequency of effective collisions between zinc atom and hydrogen ion is higher	1
(c)	Experiment II Experiment I Time (s)	
	 Correct shape of graf and smooth Label the curve correctly 	1 1
	Total	11

No.	Rubric	Marks
6 (a)(i)	oxidizing agent / to oxidize iodide ion	1
(ii) (iii)	Purple layer formed $Br_2 + 2I^- \rightarrow 2Br^- + I_2$	1
	 First mark for correct formulae of reactants and products Balanced the equation 	1 1
(iii)	$-1 \rightarrow 0$	1
(iv)	Chlorine r: Fluorine	1
(b)(i)	Potassium manganate(VII) Kalium manganat(VII) Heat Panaskan Panaskan 1. Functional diagram	1
	2. Label; Potassium manganate(VII), glass wool, metal	1
(ii)	Zinc / Zn	1
(iii)	$2Zn + O_2 \rightarrow 2ZnO$	1
(iv)	Y, W, X	1
	Total	11

 $\frac{SECTION\ B}{\text{http://cikguadura.wordpress.com/}}$

No	Mark scheme	Mark	Σ Mark
	P1: Borosilicate glass	1	
	P2: It has a lower thermal expansion coefficient	-	
7(a)	// high resistant to heat// more resistant to chemical attack.	1	4
	P3: Polyvinyl chloride	1	
	P4: It does not rust a: Light	1	
	Number of moles of sulphur = $8 \div 32 // 0.25$ mol		
	Volume of sulphur dioxide = $0.25 \times 24 = 6 \text{ dm}^3 // 6000 \text{ cm}^3$	1	
7(b)(i)		1	2
	[unit 'mol' and 'dm ³ '/'cm ^{3'} must be stated]	1	
	P1: Sulphur dioxide dissolves in water/ rain water to produce	1	
	acid solution/acid rain.		
	A man trans as a mast a manager		
	Any two correct answers:	1	
7(b)(ii)	P2: Acid rain can corrode buildings /metal structures P3: Lake and river become acidic	1	3
	P4: pH of soil decreases P5: Destroys trees/forest		
	13. Desiroys frees/forest		
7(b)(iii	$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$	1	1
)			1
	P1: Y is more effective than X in hard water.	1	
	P2: Hard water contains magnesium or calcium ions.	1	
7(c)(i)	P3: X form scum/insoluble salt with magnesium /calcium ion	1	
	P4: Y does not form scum/insoluble salt.	1	
	P5: Amount of agent X is reduced// amount of agent Y is remains	1	5
		1	
	P1: Part P = Hydrophobic P2: Part Q = Hydrophilic	1 1	
	P3: Hydrophobic part <u>dissolves</u> in the grease/ oil	1 1	
7(c)(ii)	P4: Hydrophilic part <u>dissolves</u> in the water	1	
, (2)(11)	P5: This reduces the surface tension// Increase the wetting ability	1	5
	of water	ī	
	r: Like / dislike		
	Total		20

No		Answer			Mark	Total Mark
8	(a)		Voltaic cell	Electrolytic cell		
		Negative terminal	Zinc	P	1 + 1	
		The flow of electron	Zinc to P through	Magnesium to P		4
			external circuit	through external circuit	1 + 1	
		r: showing the answ	er in the diagram			
	(b)					
				A		
		Iron spoon ———————————————————————————————————				
			ram (not include rheoronnect to positive ternitive terminal.		1 1	
		2. a beaker is half3. iron spoon and sulphate solution	eaned with sand paper fulled with silver sulp silver plate are dipped n	hate solution into the silver	1 1 1	
		-	ed to the positive term		1	
			plate: $Ag \rightarrow Ag^+ + e^-$ poon: $Ag^+ + e \rightarrow A$		1	Max 6
		[Anode/silver plate or c	cathode/Iron spoon mu	ist be stated]		

(c)	 metal Q : eg: Zinc [Zn/Fe/Sn/Pb] Q solution: eg: zinc nitrate 	1	
	3. Flow of electron : Aluminium plate to zinc plate through	1	
	connecting wire/ external circuit		
	4. Negative terminal : Al \rightarrow Al ³⁺ + 3e	1	
	5. Positive terminal: $2H^+ + 2e \rightarrow H_2$	1	
	6. Ionic equation: $2A1 + 6H^+ \rightarrow 2A1^{3+} 3H_2$	1 + 1	
	7. Function of porous pot: to allow the movement of ions // to		
	balance the total charges between solution	1	10
	8. Observations:		
	 Aluminium plate become thinner// Mass decreases// 	1	
	size become smaller		
	 Colourless bubble gas produce 	1	
	TOTAL		20

SECTION C

NO	RUBRIC	MARK	∑MARK
9 (a)	Daily application of neutralisation 1. Ammonia: neutralize organic acid produced by bacteria// to prevent latex from coagulate/remain as liquid 2. Antacid/ health salt/ sodium hydrogen carbonate: neutralised acid in stomach of gastric patients 3. Lime /quick lime (calcium oxide)/ slaked lime (calcium hydroxide), chalk (calcium carbonate): neutralised acidic soil 4. Magnesium hydroxide / toothpaste: neutralised acid	1+1 1+1	
	produced by bacteria in our mouth [Accept other suitable examples and usage]		4
(b)	Any 2 1. Example of R; sodium hydroxide solution/ litium hydroxide	1	4
	solution/ potassium hydroxide solution 2. R ionised completely in water and produced high concentration of OH ions	1+1	
	3. Exampleof Q: ammonia aqueous / solution 4. Q ionised partially in water and produce low concentration of OH ions	1 1+1	
	5. the concentartion of OH ions in R is higher than Q	1	Max 6

Total	20	0
		10
- Dataneou	1	
=	1	
• Correct reactant & product		
$// BaCl_2 + Na_2CO_3 \rightarrow BaCO_3 + 2NaCl$		
$Ba(NO_3)_2 + Na_2CO_3 \rightarrow BaCO_3 + 2NaNO_3$		
<u> </u>		
· · · · · · · · · · · · · · · · · ·		
6. Dry the precipitate/solid/salt/residue in between	1	
Rinse the residue with distilled water	1	
4. Filter the mixture	1	
	1	
	1	
3. Procedure:	4	
[Any pair of solution above]		
	1	
<u> </u>	1	
1. Solution 1 : barium nitrate /barium chloride solution	1	
	1	
	 Solution 2 : sodium carbonate/ potassium carbonate/lithium carbonate solution/ H₂CO₃ [Any pair of solution above] Procedure : Pour solution 1 into a beaker Add solution 2 into the beaker/solution 1 Stir the mixture using glass rod Filter the mixture Rinse the residue with distilled water Dry the precipitate/solid/salt/residue in between sheet of filter papers to dry Equation Sample answer:	2. Solution 2 : sodium carbonate/ potassium carbonate/lithium carbonate solution/ H ₂ CO ₃ 1 [Any pair of solution above] 3. Procedure : 1. Pour solution 1 into a beaker 2. Add solution 2 into the beaker/solution 1 3. Stir the mixture using glass rod 4. Filter the mixture 5. Rinse the residue with distilled water 6. Dry the precipitate/solid/salt/residue in between sheet of filter papers to dry 4. Equation Sample answer: Ba(NO ₃) 2 + Na ₂ CO ₃ → BaCO ₃ + 2NaNO ₃ // BaCl ₂ + Na ₂ CO ₃ → BaCO ₃ + 2NaCl • Correct reactant & product • Balanced 1

No	Explanation	Mark	∑ mark
10 (a)(i)	Hex-1-ene r: hexene	1	
	1. Hexene		1
(ii)	Percentage of carbon in compound B is higher	1	
	2. Percentage carbon in compound A = 72/86 x 100 % / 83.72% Percentage carbon in compound B = 72/84 x 100 % /85.71%	1 1	
			3

(b)	 Soluble in water/ miscible in water Low melting point/ volatile Colourless liquid Cannot conduct electricity Any 1	1	
	1. Pour compound J and K into two different test tubes 2.Put magnesium ribbon / calcium carbonate / any suitable	1 1	
	metal/carbonate metal into both test tubes 3. Place a lighted wooden splinter into the test tube// gas release is pass through the lime water	1	
	4. If 'pop' sound produced// lime water turns cloudy shows the compound is J 5. If no change the compound is K	1 1	6
(d)	Sample answer:		
	 Name of alcohol Place glass wool in a boiling tube Add a few drops of alcohol to the glass wool 	1 1 1	
	4. Clamp the boiling tube horizontally 5. Place a porcelain chips in the middle of the boiling tube	1 1	
	6. Heat the porcelain chips strongly 7. Heat the alcohol/glass wool	1 1	
	8. Collect the gas produced in a test tube 9. Functional diagram	1	
	10. Label: Glass wool damped with alcohol, porcelain chips,	1	
	water, heat 11. Equation: $C_2H_5OH \rightarrow C_2H_4 + H_2O$	1	
	Porcelain chips Glass wool		
	damped with ethanol Heat vigorously Water		10
		Total	20

KERTAS 3

No.	Mark scheme http://cikguadura.wordpress.com/	Score
1(a)	Able to record all readings accurately to one decimal point with correct unit.	3
	Answer:	
	70.0 °C, 77.0 °C, 83.0 °C, 83.0 °C, 83.0 °C, 84.0 °C, 89.0 °C, 95.0 °C	
	Able to record all readings without unit and no decimal point	2
	Able to record at least 6 readings.	1
	No response / wrong response	0

No.	Mark scheme	Score
1(b)	Able to plot a graph correctly which fulfills the following criteria. Answer:	
	Temperature Time, t (s)	3
	 both axes are labeled and with correct units Y axis: temperature, (°C) X axis: time, min uniform scale all points are transferred correctly smooth and correct curve the size of the graph must ≥ 50% of the graph paper. 	
	Able to plot a graph at least fulfill three of the criteria.	2
	Able to have an idea to plot a graph Example answer: 1. graph axis 2. a curve	1
	No response / wrong response	0

No.	Mark scheme	Score
1(c)(i)	Able to state all 3 criteria correctly 1. mark on the graph to show melting point 2. label the melting point on the graph and 3. state the melting point, 83.0 ° C Answer: Temperature Temperature Time, t (s) 2. show 83.0 ° C / write the melting point on the graph 3. 83.0 ° C	3
	Able to state at least two criteria correctly	2
	Able to state at least one criteria correctly	1
	No response / wrong response	0

No.	Mark scheme	Score
(c)(ii)	Able to state the meaning of melting point based on the heating graph correctly. 1. The temperature is constant in 2 nd minute to 4 th minute 2. at 83.0 ° C 3. Where solid becomes liquid.	3
	Sample answer: 1. The temperature which doesn't change / constant within a certain period of time / 2 nd to 4 th minute 2. at 83.0 ° C 3. Where solid becomes liquid.	
	Able to state any two criteria correctly.	2
	Able to state any one criteria correctly or an idea of melting point.	1
	No response / wrong response	0

No.	Mark scheme	Score
(d)	Able to explain why the temperature of naphthalene from 2 nd minute to 4 th minute did not change during the heating process correctly.	3
	Answer:	
	1.Heat energy absorbed by the particles /molecules, is	
	2. Used to overcome the forces between particles / molecules.	
	Able to explain why the temperature of naphthalene did not change from 2 nd minute to 4 th minute during the heating process. Sample answer:	2
	1. Heat absorbed.	
	2. Used to overcome the forces between particles / molecules.	
	Able to an idea of why the temperature does not change during the heating	1
	process.	
	Example :	
	Heat is absorbed//	
	Solid become liquid//	
	No response / wrong response	0

Q	Mark scheme	е				Score
2(a)	Test tube Inference	A Iron nail does not rust // Fe ²⁺ does not present	B Iron nail rust // Fe ²⁺ present / formed	C Iron nail does not rust // Fe ²⁺ does not present	D Iron nail rust // Fe ²⁺ present / formed	3
	Able to state	3 inferences corre	ectly			2
	Able to state	any one inference	e correctly	·		1
	No response	/wrong response	·	<u>-</u>		0

Q	Mark scheme	Score
2(b)	Able to state the hypothesis correctly	
	Sample answer:	
	When a more electropositive metal / higher than iron in Electrochemical series is in contact with iron, iron (nail) does not rust.	
	When a less electropositive metal / lower than iron in Electrochemical series is in contact with iron, iron (nail) rust.	3
	Able to state the hypothesis less correctly Sample answer:	2
	When a more electropositive metal / higher than iron in Electrochemical series is in contact with iron, iron (nail) does not rust. or	
	When a less electropositive metal / lower than iron in Electrochemical series is in contact with iron, iron rust. or	
	The rusting of iron is <u>faster/</u> slower, if a <u>less</u> /more electropositive metal is in contact with iron/Fe.	
	Able to give an idea of hypothesis	1
	Sample answer: Iron rust when in contact with other metal // other metal affect the rusting of iron.	
	No response / wrong response	0

Q	Answer	Score
2(c)	Able to state all the variables in this experiment correctly	3
	Sample answer:	
	Manipulated variable: Type / different metal	
	Responding variable: Rusting // presence of blue spot	
	Constant variable: Type of nail iron // iron// medium in which the iron are	
	kept	
	Able to state any two of the variables in this experiment correctly	2
	Able to state any one of the variables in this experiment correctly	1
	No response / wrong response	0

Q	Answer	Score
2(d)	Able to state all 3 criteria correctly	3
	Sample answer:	
	1. Rusting of iron is the formation of blue spot / colouration	
	2. When iron nail is coiled / in contact with a less electropositive metal (copper) /	
	metal located below iron in Electrochemical series.	
	3. Immersed / dipped / placed / put in a mixture of jelly solution, potassium	
	hexacyanoferrate(III) and phenolphthalein.	
	Able to state at least two criteria correctly	2
	Sample answer:	
	1. Rusting of iron is the formation of blue spot / colouration	
	2. When iron nail is coiled / in contact with a less electropositive metal	
	Able to state any one criteria correctly	1
	Sample answer:	
	1. Rusting of iron is the formation of blue spot / colouration or	
	2. When iron nail is coiled / in contact with a less electropositive metal	
	No response / wrong response	0

Q	Answer	Score
2(e)	Able to classify the metals into metal that can provide sacrificial protection and metal that cannot provide sacrificial protection correctly.	3
	Answer: Metal that can provide sacrificial protection: magnesium /Mg and zinc /Zn Metal that cannot provide sacrificial protection: copper/Cu	
	Able to classify any two metals correctly	2
	Able to classify one metals correctly	1
	No response / wrong response	0

Q	Answer	Score
2(f)	Able to predict the observation correctly.	3
	Answer: The intensity of blue spot/colouration is very high // higher than test tube B.	
	Able to predict the observation	2
	Answer:	
	Blue spot/ colouration formed	
	Able to state idea of observation	1
	Answer:	

Blue	
No response / wrong response	0

Q	Answer	Score
3(a)	Able to state the problem statement of the experiment correctly.	
	How does the presence of <u>catalyst</u> / <u>manganese (IV) oxide</u> affect on the rate of decomposition of hydrogen peroxide?	3
	How does the presence of catalyst affect the rate of reaction?	2
	To investigate the effect/ presence of catalyst.	1
	Students give a wrong response.	0
3(b)	Sample answer:	
	Manipulated variable: The presence of catalyst/ manganese (IV) oxide Responding variable: rate of reaction// rate of decomposition of hydrogen peroxide	
	Constant variable: Concentration and temperature of hydrogen peroxide.	
	Students able to write all 3 variables correctly	3
	Students able to write 2 variables correctly	2
	Students able to write 1 variable correctly	1
	Students give a wrong response.	0
3(c)	Able to state the relationship between the manipulated variable and the responding variable and state the direction.	
	Sample answer:	
	When catalyst/ manganese (IV) oxide presents, the rate of decomposition of hydrogen peroxide increases	3
	When catalyst presents, the rate of reaction increases.	2
	Catalyst affects the rate of reaction.	1
	Students give a wrong response.	0

Answer	Score
Able to give complete list of substances and apparatus	
Method 1: <u>Substances</u> : Hydrogen peroxide, manganese (IV) oxide powder <u>Apparatus</u> : Test tube, measuring cylinder, spatula, wooden splinter.	3
Students able to list down substances and improperly apparatus Substances: Hydrogen peroxide, manganese (IV) oxide powder Apparatus: Test tube, spatula	2
Students able to list one of the substance and suitable container Substances: Hydrogen peroxide and manganese (IV) oxide powder Apparatus: Beaker	1
Students give a wrong response.	0
Method 2:	
Able to give complete list of substances and apparatus Substances: Hydrogen peroxide, manganese (IV) oxide powder Apparatus: Conical flask, delivery tube and stopper, burette, basin/ water trough, retort stand with clamp, stopwatch, measuring cylinder, spatula.	3
Students able to list down substances and improperly apparatus Substances: Hydrogen peroxide, manganese (IV) oxide powder Apparatus: Conical flask, delivery tube and stopper, burette, basin/ water trough, retort stand with clamp, stopwatch.	2
Students able to list one of the substance and suitable container Substances: Hydrogen peroxide, manganese(IV) oxide powder Apparatus: Conical flask, delivery tube and stopper, burette, basin/ water trough	1
	Able to give complete list of substances and apparatus Method 1: Substances: Hydrogen peroxide, manganese (IV) oxide powder Apparatus: Test tube, measuring cylinder, spatula, wooden splinter. Students able to list down substances and improperly apparatus Substances: Hydrogen peroxide, manganese (IV) oxide powder Apparatus: Test tube, spatula Students able to list one of the substance and suitable container Substances: Hydrogen peroxide and manganese (IV) oxide powder Apparatus: Beaker Students give a wrong response. Method 2: Able to give complete list of substances and apparatus Substances: Hydrogen peroxide, manganese (IV) oxide powder Apparatus: Conical flask, delivery tube and stopper, burette, basin/ water trough, retort stand with clamp, stopwatch, measuring cylinder, spatula. Students able to list down substances and improperly apparatus Substances: Hydrogen peroxide, manganese (IV) oxide powder Apparatus: Conical flask, delivery tube and stopper, burette, basin/ water trough, retort stand with clamp, stopwatch. Students able to list one of the substance and suitable container Substances: Hydrogen peroxide, manganese(IV) oxide powder Apparatus: Conical flask, delivery tube and stopper, burette, basin/ water trough, retort stand with clamp, stopwatch.

Q	Answer	Score
3(e)	Method 1:	
	Able to list all the steps correctly	3
	Procedure:	
	1. Measure and pour (2 - 5) cm ³ of hydrogen peroxide in a test tube.	
	2. Add 1 spatula of manganese (IV) powder into the test tube	
	3. Put a glowing splinter into the test tube.	
	4. Observe and record the changes on the glowing splinter.	
	5. Repeat steps 1 to 4 without adding manganese (IV) oxide/ catalyst.	
	Able to write steps 1, 2, 4, 5 improperly.	2
	Able to write steps 1&2 less correctly.	1
	No response / wrong response.	0
3(e)	Method 2:	
	Able to list all the steps correctly	
	Procedure:	3
	1. Fill a basin/ water trough with water.	
	2. Fulfill a burette with water and invert it in onto water in a basin/ water	
	trough.	
	Clamp the burette by using a retort stand. Record the initial burette reading.	
	4. Measure and pour (20 - 100) cm ³ of hydrogen peroxide in a conical flask.	
	5. Add 1 spatula of manganese (IV) powder into the conical flask.	
	6. Close the conical with a stopper which attached to a delivery tube.	
	Immediately start the stopwatch.	
	7. Observe and record the burette reading at every 30 seconds interval time.	
	8. Repeat steps 1 to 7 without adding manganese(IV) oxide/ catalyst.	
	Able to write 7 steps improperly.	
	1. Fill a basin/ water trough with water.	
	2. Fulfill a burette with water and invert it in onto water in a basin/ water	2
	trough.	
	3. Clamp the burette by using a retort stand. Record the initial burette reading.	
	4. Measure and pour of hydrogen peroxide in a conical flask.	
	5. Add 1 spatula of manganese(IV) powder into the conical flask.	
	6. Close the conical with a stopper which attached to a delivery tube. Start	
	the stopwatch.	
	7. Observe and record the burette reading	

	Able to write at least 6 sterns. 1. Fill a basin/ water 2. Fulfill a burette watrough. 3. Measure and pour 4. Add 1 spatula of 1. Close the conical 6. Observe and reconstruction.	r trough vith wate or of hydromangane with a st	with wat r and inv rogen pe sse (IV) p opper w	vert it in eroxide ir oowder ir chich atta	n a conic nto the c	al flask conical	c. flask.	1
	The response y wrong resp	onse.						0
3(f)	Method 1:							U
()	Able to tabulate the data	with the	followin	g aspect	S			
	Sample answer:							
	Set				Observ	ation		
	Hydrogen peroxide + ma	inganese	(IV) oxid	le	Observ	vation		2
	Hydrogen peroxide only		(11) 0/110					
	Able to tabulate the data	with the	followin	g aspect	S			
	Sample answer:							
	Set With catalyst							1
	With catalyst Without catalyst							_
	without catalyst							
	Students give a wrong res	ponse.						0
3(f)	Method 2:							
	Able to tabulate the data	with the	followin	g aspect	S			
	Cald Mülkarılı aldının	/10	Λ - :-I					
	Set 1: With catalyst/ man	ganese(I	V) oxide					
	Time (s)	0	30	60	90	120		
	Volume of gas (cm ³)							2
	Set 2: Without catalyst/ m	nanganes	se(IV) ox	ide				
	Time (s)	0	30	60	90		120	
	Volume of gas (cm ³)							
		•	•	•	•	•		1

Set	Volume	
With catalyst/ manganese(IV) oxide		
Without catalyst]

http://cikguadura.wordpress.com/ END OF MARKING SCHEME