times soalan ulangkaji spm 2011 http://edu.joshuatly.com/

┥▶

Analysis

[1449/1] [1449/2]

Mathematics

		TODIC	PAPER 1					PAPER 2				
		TOPIC	06	07	08	09	10	06	07	08	09	10
	1	Polygon I, II	7	6,7	7	6,7	7					
F O	2	Transformations I, II	9,10	9,10	9,10	9,10	9,10					
	3	Trigonometry I	13		11							
	4	Algebraic Expressions I, II, III	20			19	19					
	5	Algebraic Formulae	21	21	21	20	21					
R	6	Algebraic Fractions	19	20	20	21	20					
Μ	7	Linear Equations	22	22	22	22	22	5	2	4	2	2
	8	Indices	23, 24	23, 24	23	23, 24	23,24					
1	9	Linear Inequalities	25,26	25	24	25	25		3			
-	10	Graph of Functions I										
3	11	Solid Geometry I, II, III						2	6	5	11	4
	12	Circles I, II						9	7	8	6	7
	13	Statistics I, II	27, 28	27	25,26, 27	26, 27	26,27					
	1	Standard Form	1, 2, 3, 4	1, 2, 3	1, 2, 3, 4	1, 2, 3	1,2,3, 4					
	2	Quadratic Expressions and Equations		19	19			7	1	3	3	3
F	3	Sets	30,31, 32	29,30, 31	29,30, 31	29,30, 31	29,30, 31	1		1		1
0	4	Mathematics Reasoning						4	8	6	7	5
R	5	The Straight Lines	33,34	32,33	32,33	32,33	32,33	6	5	10	5	6
Μ	6	Statistics III		26				14	14	14	16	14
	7	Probability I				34,35	34,35		9			
4	8	Circles III	8	8	8	8	8					
	9	Trigonometry II	11,12	11,12, 13	12, 13	11,12, 13	11,12, 13					
	10	Angles of Elevation and Depression	15,16	15	15,16	15	15,16					
	11	Lines and Planes in 3-Dimensions	14	14	14	14	14	3	4	2	4	11
	1	Number Base	5,6	4,5	5,6	4,5	5,6					
	2	Graph of Function II	28	28	28	28	28	12	12	13	1, 12	12
	3	Transformations III						13	13	12	15	13
F	4	Matrices	40	39,40	39,40	39,40	39,40	8	11	11	9	8
0	5	Variations	38 39	36,37,	36,37,	36,37,	36,37,					
R		Variations	56,57	38	38	38	38					
Μ	6	Gradient and the Area under a Graph						11	10	9	10	9
5	7	Probability II	35,36, 37	34, 35	34, 35			10		7	8	10
	8	Bearing	18	16	17	16	17					
	9	The Earth as a Sphere	17	17,18	18	17,18	18	16	16	16	14	16
	10	Plan and Elevation						15	15	15	13	15
		Total	40	40	40	40	40	16	16	16	16	16

*Question no.

23

Mathematic Paper 1

Answer all questions.

- 1 Round off 70.48 correct to three significant figures.
 - A 70.4
 - B 70.5 C 70.40
 - D 70.50
 - 0.042 × 10⁻⁷
 - 2.1

2

- A 2×10^{-5}
- D 2×10^{-9}
- 3 Given that $0.000\ 054 = m \times 10^n$, where $m \times 10^n$ is a number in standard form. State the value of m and of n.
 - A m = 5.4, n = -5
 - B m = 5.4, n = -6
 - C m = 54, n = -5
 - D m = 54, n = -6
- 4 Express 516_8 as a number in base 5.
 - A 314₅ B 334₆

JAWAPAN boleh didapati di laman web www.afterschool.my

- $\begin{array}{ccc} B & 334_{5} \\ C & 2314_{5} \end{array}$
- D 3214_{5}

5 Evaluate 11011, - 101,.

- A 110₂
- $B 110_{2}$
- C 10110 D 11010
- D 11010₂
- 6 Express $8(8^2 + 7)$ as a number in base eight..
 - A 1007₈
 - B 1070[°] C 7010
 - $D 7001_{8}$

7 Diagram 1 shows a triangle PQR and quadrilateral RSTU. PRS is a straight line.

Diagram 1

Find the value of x.

- A 90°
- B 95°
- C 100°
- D 105°
- 8 Diagram 2 shows a regular pentagon PQRST and quadrilateral TUVW. PTUN is a straight line.

Find the value x,

- A 72
- B 84
- C 96
- D 108
- 9 Diagram 3 shows a circle with centre O and TSR as a tangent to the circle at S. Given that POQR is a straight line.

Find the value of x, in degree, is.

- A 20
- B 35
- C 55
- D 70

times) soalan ulangkaji spm 2011 http://edu.joshuatly.com/

Quadrilateral Q is the image of quadrilateral P under a clockwise rotation of 90°.

Which of the point A, B, C or D is the centre of that rotation?.

11 Diagram 5 shows a Cartesian plane.

Point P is the image of point L under a reflection in the line ST. Coordinate P is

- (-3, 1) А
- В (-2, 2)С (-1, 3)
- D (1,5)

12 In Diagram 6, point P and point Q lie on the arc of a unit circle with centre O.

Find the value of $\cos x^{\circ} + \sin y^{\circ}$.

- В -0.10
- С 1.14
- D 1.27
- 13 Which graph represents part of the graph $y = \cos x$?

14 Diagram 8 shows the graph of function.

Which of the following functions represent the graph?

А	$y = -3 - x^3$
В	$y = 3 - x^3$
С	$y = x^3 - 3$
D	$y = x^3 + 3$

тМ

IT • ENGINEERING • CREATIVE MULTIMEDIA • BUSINESS • MANAGEMENT FINANCE • ACCOUNTING • LAW • BIO-INFORMATICS • MEDICAL IT Intakes | March | June | October

25

- times SOALAN ULANGKAJI SPM 2011 http://edu.joshuatly.com/
- 15 Diagram 9 shows three points P, Q and R, on a horizontal plane. Q lies due north of R and bearing of P from Q is 100°.

Find the bearing of R from P.

60⁰ А

26

- В 80^o
- С 220^o
- D 240^o
- 16 Diagram 10 shows a cuboid KLMNPQRS with a rectangular base, KLMN.

Diagram 10

Name the angle between the plane PMS and the plane PQRS.

- А ∠MPQ_
- В ∠RSM
- С ∠MSN
- D ∠RPM

17 In Diagram 10, P is a point on the earth. N is the North Pole, S is the South Pole and NOS is the axis of the earth.

Find the location of point P

А	$(30^{\circ}S, 8)$	80°E)
	/ -	-

- В $(30^{\circ}S, 100^{\circ}E)$
- $(60^{\circ}S, 80^{\circ}E)$ С
- $(60^{\circ}S, 100^{\circ}E)$ D
- 18 Diagram 12 shows Ahmad observing a balloon which is flying vertically above point Q. The horizontal distance between him at point P and point Q is 300 m.

Given that the angle of elevation of the kite from Ahmad is 55°. Find the vertical height, h, in m, of the kite.

- 172.07 А
- В 210.06
- 245.75 С
- D 428.44
- $\frac{m+4n}{2n} \frac{m-n}{2n}$ as a single fraction in its simplest 19 Express 2n 3n from.

	5n - m
A	бn
R	<u>11n – m</u>
D	6n
C	5m + 11n
C	6n ²

3n – m D $6n^2$

20
$$(x-y)^2 - (x-y)(x+y) =$$

- А -2xy
- В $-2y^2$
- С $-2xy+2y^2$
- D $-2xy + y^{2}$

21 Given that $y = 7x^2 - 3$, then x =

A
$$\sqrt{\frac{y+3}{7}}$$

B $\sqrt{\frac{y-3}{7}}$
C $\frac{\sqrt{y-3}}{7}$
D $\frac{\sqrt{y+3}}{7}$

22 Given that $2(x+1) - \frac{3(x-4)}{2} = 5$ calculate the value of x.

- А -9
- В -6
- С 5 D 18
- $23 \frac{1}{\sqrt{7^3}} =$ $\left(\frac{1}{7}\right)^{\frac{1}{3}}$ А $\left(\frac{1}{7}\right)^{\frac{3}{2}}$

В

D
$$7^{-\frac{3}{2}}$$

24 Simplify $\frac{(2p^2)^3}{6q^2} \times 3pq^3$. А $4p^7q$ В С

 p^7q D p⁶q

25 List all the integers x that satisfy the inequality $-5 < 1-2x \le 3$.

- А -4, -3, -2, -1, 0, 1, 2, 3 В -2, -1, 0, 1, 2, 3
- С -2, -1, 0, 1, 2
- D -1, 0, 1, 2

26 Find the solution for $3 + 2x \le 3x - 7$

- А $x \ge 10$
- В $x \ge 4$
- С x ≤ -10
- D $x \le 2$
- 27 Diagram 13 is a bar chart which shows the scores of a group of pupils in a test.

Find the percentage of pupils who score more than 3.

- А 35
- В 45
- С 55
- D 65
- 28 Table 1 shows the number of pencils brought by a group of students to school.

Number of pencils	1	2	3	4	5
Frequency	10	14	9	5	2

If a pie chart is drawn to represent all the given information, find the angle of the sector representing the number of students from group who brought three pencils.

А	45
В	81
С	90
D	126

29 Diagram 14 shows the universal set, $\xi = P \cup Q \cup R$.

List all elements of set, $(Q \cap R') \cup P$

Α	{ j, h}
В	{j, h, k
C	Íf : h

- {f, j, h, k} {f, g, h, j, k} D

IT • ENGINEERING • CREATIVE MULTIMEDIA • BUSINESS • MANAGEMENT FINANCE • ACCOUNTING • LAW • BIO-INFORMATICS • MEDICAL IT Intakes | March | June | October

тйі

30 Diagram 15 is a Venn diagram which shows the number of element of set P, Q and R.

It is given that the universal set $\xi = P \cup Q \cup R$ and n(P) = n(Q). Find $n[(P \cap R) \cup Q']$

A 11 B 15

C 18

D 19

31 Diagram 16 is a Venn diagram which shows set P.

The number of subsets of set P is

А	5
D	1.

AWAPAN boleh didapati di laman web www.afterschool

B 16 C 25

D 32

32 Diagram 17 shows two straight lines, PQ and RQ, on a Cartesian plane.

It is given that the gradient of RQ is $\frac{3}{2}$ Find the y- intercept of RQ.

33 The gradient of the straight line $2y + \frac{2}{3}x = 6$ is

- $\begin{array}{ccc} A & -\frac{2}{3} \\ B & -\frac{1}{3} \\ C & 3 \\ D & 4 \end{array}$
- 34 A bag contains 51 balls. If a ball is chosen at random from the bag, the probability of choosing a red ball is $\frac{8}{17}$.

Find the number of balls in the beg which are not red balls.

- A 24
- B 25
- C 26 D 27
- 35 A box contains 24 blue marbles and a number of yellow marbles. A marble is picked at random from the box.Probability of getting yellow marble is <u>3</u>. 6 yellow marbles

were took away from the box. If a marble is picked at random from the box, what is the probability of getting yellow marble?

(times) soalan ulangkaji spm 2011 http://edu.joshuatly.com/

- 38 P (12° N, 20° E), Q and R are three points on the earth's surface. Q is due south of P. The difference in latitude between P and Q is 40°. R is due west of Q. The difference in longitude between Q and R is 60°. The position of R is
 - $(25^{\circ}S, 40^{\circ}W)$ А
 - (25°S, 80°E) В
 - С $(55^{\circ}N, 40^{\circ}W)$
 - D (55°N, 80°E)
- 39 P varies inversely as the cube of Q. The relation between P and Q is
- A $P \propto Q^3$
- B $P \propto Q^3$
- C P oc -

D P
$$\propto \frac{1}{\Omega^3}$$

40 Table 2 shows some values of p, q, and r.

р	18	48
q	3	6
r	8	m

table 2

Given that $p \propto \frac{q^2}{\sqrt[3]{r}}$, calculate the value of m.

- А В
- 6 С 9

3

27 D

TM

END OF QUESTION PAPER

(times) soalan ulangkaji spm 2011 http://edu.joshuatly.com/

IT • ENGINEERING • CREATIVE MULTIMEDIA • BUSINESS • MANAGEMENT FINANCE • ACCOUNTING • LAW • BIO-INFORMATICS • MEDICAL IT Intakes | March | June | October

.**TN**

		$F = \begin{bmatrix} G \\ B \\$	
Idei	ntify and calculate	e the angle between the line BCEF and the plane ABCD.	[3 mark
Ans	wer :		
(a)	State whether t	be following statement is true or false. $r \subseteq \{p, q, r, s\}$ or $-4 > -5$	[1 mark
(a)	State whether t	he following statement is true or false. $r \subset \{p, q, r, s\}$ or $-4 > -5$	[1 mark
(a) (b)	State whether t Write down Pre Premise 1	he following statement is true or false. $r \subset \{ p, q, r, s \}$ or $-4 > -5$ emise 2 to complete the following argument: : If a quadrilateral is a rhombus, then it has two parallel sides.	[1 mark
(a) (b)	State whether t Write down Pre Premise 1 Premise 2	he following statement is true or false. $r \subset \{ p, q, r, s \}$ or $-4 > -5$ emise 2 to complete the following argument: : If a quadrilateral is a rhombus, then it has two parallel sides. :	[1 mark
(a) (b)	State whether t Write down Pre Premise 1 Premise 2 Conclusion	he following statement is true or false. r ⊂ { p, q, r, s } or −4 > −5 emise 2 to complete the following argument: : If a quadrilateral is a rhombus, then it has two parallel sides. :	[1 mark
(a) (b) (c)	State whether t Write down Pre Premise 1 Premise 2 Conclusion Make a general which follows t	he following statement is true or false. $r \subset \{p, q, r, s\}$ or $-4 > -5$ emise 2 to complete the following argument: : If a quadrilateral is a rhombus, then it has two parallel sides. : :	[1 mark
(a) (b) (c)	State whether t Write down Pre Premise 1 Premise 2 Conclusion Make a general which follows t	the following statement is true or false. $r \subset \{ p, q, r, s \}$ or $-4 > -5$ emise 2 to complete the following argument: : If a quadrilateral is a rhombus, then it has two parallel sides. :	[1 mark 2 marks
(a) (b) (c)	State whether t Write down Pre Premise 1 Premise 2 Conclusion Make a general which follows t $7 = 2(1)^2 + 5$ $13 = 2(2)^2 + 5$	he following statement is true or false. $r \subset \{ p, q, r, s \}$ or $-4 > -5$ emise 2 to complete the following argument: : If a quadrilateral is a rhombus, then it has two parallel sides. :	[1 mark
(a) (b) (c)	State whether t Write down Pre Premise 1 Premise 2 Conclusion Make a general which follows t $7 = 2(1)^2 + 5$ $13 = 2(2)^2 + 5$ $23 = 2(3)^2 + 5$	he following statement is true or false. $r \subseteq \{p, q, r, s\}$ or $-4 > -5$ emise 2 to complete the following argument: : If a quadrilateral is a rhombus, then it has two parallel sides. : :	[1 mark
(a) (b) (c)	State whether to Write down Prepresentation Premise 1 Premise 2 Conclusion Make a general which follows to $7 = 2(1)^2 + 5$ $13 = 2(2)^2 + 5$ $23 = 2(3)^2 + 5$ $37 = 2(4)^2 + 5$	he following statement is true or false. $r \subset \{p, q, r, s\}$ or $-4 > -5$ emise 2 to complete the following argument: : If a quadrilateral is a rhombus, then it has two parallel sides. : : : KLMN is not a rhombus conclusion by induction for the number sequence 7, 13, 23, 37, he following pattern.	[1 mark
(a) (b) (c) An	State whether to Write down Prepresented Premise 1 Premise 2 Conclusion Make a general which follows to $7 = 2(1)^2 + 5$ $13 = 2(2)^2 + 5$ $23 = 2(3)^2 + 5$ $37 = 2(4)^2 + 5$ swer :	he following statement is true or false. $r \subseteq \{p, q, r, s\}$ or $-4 > -5$ emise 2 to complete the following argument: : If a quadrilateral is a rhombus, then it has two parallel sides. : : : KLMN is not a rhombus conclusion by induction for the number sequence 7, 13, 23, 37, he following pattern.	[1 mark
(a) (b) (c) An (a)	State whether to Write down Prepremise 1 Premise 2 Conclusion Make a general which follows to $7 = 2(1)^2 + 5$ $13 = 2(2)^2 + 5$ $23 = 2(3)^2 + 5$ $37 = 2(4)^2 + 5$ swer :	<pre>he following statement is true or false. r ⊂ { p, q, r, s } or −4 > −5 emise 2 to complete the following argument:</pre>	[1 mark
(a) (b) (c) An (a) (b)	State whether to Write down Prepremise 1 Premise 2 Conclusion Make a general which follows to $7 = 2(1)^2 + 5$ $13 = 2(2)^2 + 5$ $23 = 2(3)^2 + 5$ $37 = 2(4)^2 + 5$ swer :	he following statement is true or false. $r \subseteq \{ p, q, r, s \}$ or $-4 > -5$ emise 2 to complete the following argument: : If a quadrilateral is a rhombus, then it has two parallel sides. : : KLMN is not a rhombus conclusion by induction for the number sequence 7, 13, 23, 37, he following pattern.	[1 mark
(a) (b) (c) An (a) (b)	State whether to Write down Prepremise 1 Premise 2 Conclusion Make a general which follows to $7 = 2(1)^2 + 5$ $13 = 2(2)^2 + 5$ $23 = 2(3)^2 + 5$ $37 = 2(4)^2 + 5$ swer :	the following statement is true or false. $r \subset \{ p, q, r, s \}$ or $-4 > -5$ emise 2 to complete the following argument: : If a quadrilateral is a rhombus, then it has two parallel sides. :	[1 mark

31

IT • ENGINEERING • CREATIVE MULTIMEDIA • BUSINESS • MANAGEMENT FINANCE • ACCOUNTING • LAW • BIO-INFORMATICS • MEDICAL IT Intakes | March | June | October

A TIN University

6 Diagram 1 shows a solid that was formed by joining a right prism and a right pyramid.

The right angled triangle PST is the uniform cross-section of the prism. PQRS is a square and the height of the pyramid is 6 cm. Calculate the volume, in cm³, of the solid.

[4 marks]

Answer :

7 In diagram 3, O is the origin and PQRS is a trapezium. PS is parallel to QR. The straight line RS is parallel to the y-axis. The points Q and S lie on the x-axis.

Find

- (a) the equation of the straight line QR,
- (b) the x-intercept of the straight line QR. [5 marks]

IT • ENGINEERING • CREATIVE MULTIMEDIA • BUSINESS • MANAGEMENT FINANCE • ACCOUNTING • LAW • BIO-INFORMATICS • MEDICAL IT Intakes | March | June | October

32

(a) Q is a 2 x 2 matrix such that $\begin{bmatrix} 3 & 4 \\ 3 & -2 \end{bmatrix} Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Find matrix Q. (b) Write the following simultaneous linear equations as a matrix equation. 3x + 4y = -6

times) soalan ulangkaji spm 2011

http://edu.joshuatly.com/

$$3x - 2y = 4$$

Hence using matrices, calculate the value of x and of y.

Answer :

(a)

8

(b)

9 In diagram 4, RS and QT are arcs of two circles, with common centre P and quadrant PRS. PQR is a straight line.

.**TN**

IT • ENGINEERING • CREATIVE MULTIMEDIA • BUSINESS • MANAGEMENT FINANCE • ACCOUNTING • LAW • BIO-INFORMATICS • MEDICAL IT Intakes | March | June | October

33

[6 marks]

times soalan ulangkaji spm 2011 http://edu.joshuatly.com/

- (a) State the uniform speed, in ms⁻¹, of the particle..
- (b) Calculate the rate of change of speed, in ms⁻², in the first 6 seconds.
- (c) The total distance travelled in t seconds is 204 metres. Calculate the value of t.

[6 marks] (c)

11 Diagram 11 shows three cards labeled with letters in box K and three numbered cards in box L.

A card is picked at random from box K and then a card is Answer : picked at random from box L. By listing the sample of all

(a)

(b)

picked at random from box L. By listing the sample of all the possible outcomes of the event, find the probability that

- (a) a card labeled H and the card with an even number are picked,
- (b) a card labeled with vowel or the card with prime number are picked,

[5 marks]

Section B [48 marks] Answer any four questions in this section.

				Answe	er any four	questions in	n this section	on.			
12 (a)	a) Complete table 12 in the answer space for equation $y = -x^3 + 9x + 5$ by writing the values of y when $x = -3$ and $x = 2$.										[2 marks]
(b)	b) For this part of the question, use the graph paper provided. You can use a flexible curve rule.										
	By using a scale of 2 cm to 1 unit on the x-axis and 2 cm to 5 units on the y-axis, draw the graph of $y = -x^3 + 9x + 5$ for $-4 \le x \le 4$.										[4 marks]
(c)	:) From your graph, find										
	(i) the value of y when , (ii) the value of x when $y = -10$.										[2 marks]
(d)	Draw a sui	itable straig	ht line on y	your graph	to find all t	he values o	f x which				
	satisfy the State these	equation -: e values of x	x ³ + 11x + 2 x.	$2 \text{ for } -4 \le x \le$	≤4.						[4 marks]
Ansv	wer:										
(a)											
	x y	-4 33	-3	-2 -5	-1 -3	0 5	1 13	2	3	4 -23	
	k =							~		• • • •	
	m =										
(b)	Refer to g	raph paper									
(c)	(i) y = (ii) x =										
(d)	x =										

Graph for Ouestion 12

													-					-																		
																		++									++-							+++		$\left \right $
																																				\square
			+++		++-								++-		_	÷÷		++		÷÷	++-	++-			++-	┝┿┿	++-			++-			++	+++		
																					#						#									
+ +			+++		++-						$\left \right $			$\left \right $			$\left \right $	++	+++		++-					$\left \right $	++-			\square	$\left \cdot \right $			+++		$\left \right $
					++-											++-		++	+++		++-				++-		++						++	+++		$\left \cdot \right $
																																				\square
HŦ	++1		+++	+++	++	+++1	++	$\left \right $	++1	++	HF	+	++	H	++	H	HF	H	$+ \square$	+	++	++		$+ \square$	++	+ + + + + + + + + + + + + + + + + + +	++	+ -	++	++	$\left \right $	+	Ŧ	++1	++	H
H																					\square					\square				\square			+	+++		F
					#								#		#			#			#				#		#		#	#			\ddagger			Ħ
																																				Ħ
┝┼┼																				++				┢┝┥┫								┢┝┤┫	++	+		++
											\square										-												\square	+++		Ħ
																					#												$\downarrow \downarrow$	+++		Ħ
					TE																															
																		++																		
			+++													++		+++			++-				++-	$\left \right $	++						++			$\left \right $
																																		+		
																					T															
$\left \right $			+++		++-						$\left \right $			$\left \right $		++	$\left \right $	++	+++		++-					$\left \right $	++		++-		$\left \cdot \right $		++	+++		
			+++																															+++		
																		#															$\downarrow \downarrow$			Ħ
																		+																		\vdash
HŦ	++1	++	++F	+++7	++	$\left \right \left \right $	HH	$\left \right $	++1	++	HF	+	++	H	++	++	HF	ŦĒ	++1	$+\mathbb{F}$	++	++	\mathbb{H}^{-}	<u>⊢</u> †∎	++	H	++	H	++	++	$\left \right \right $	H	Ŧ	++1	++	\mathbb{H}
H			+++															\square			\square					H		\square		\square	\square	H	+			Ħ
												Ħ				Ħ		Ħ															\mp			Ħ
																					\square												\square			
																																				\square
\square														\square			\square									\square							+	+++		\mathbb{H}
H			+													F	\square	\square			\square					H		\square		\square			\square			Ħ
																					#						#		#				$\downarrow \downarrow$			Ħ
																		\pm																		Ħ
			+++															++																		++
H						\square					HF	H		H			HF	±₽	++	+	++			⊢⊢∎		H						⊢⊢	+	++		\mathbb{H}
H					-						\square				\square	F	H	\square			H	-	\square	H		H		H		F		H	\square	\square		Ħ
																		\mp			\ddagger	\square					#		#	\square			$\downarrow \downarrow$			Ħ
																																				Ħ
																										\square							\rightarrow	+		\square

IT • ENGINEERING • CREATIVE MULTIMEDIA • BUSINESS • MANAGEMENT FINANCE • ACCOUNTING • LAW • BIO-INFORMATICS • MEDICAL IT Intakes | March | June | October

A TIN UNIVERSITY

13 Diagram 6 shows quadrilaterals ABCD, PQRS and PTUV drawn on a Cartesian plane.

Diagram 6

(a) Transformation T is a translation $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$

Transformation R is a reflection in the line y = 5 State the coordinates of the image of point M under each of the following transformations :

(ii) TR.

[4 marks]

Answer:

- (a) (i)
 - (ii)

- (b) Diagram 13.2 shows two pentagons, KLMNP and PQRST drawn on square grids.
 - (i) PQRST is the image of KLMNP under the combined transformation JK. Describe in full, transformation:
 (a) K
 (b) J. [6 marks]
 - (ii) It is given that area of pentagon PQRST is 171m². Calculate the area, in cm2, of the region represented by KLMNP.

[3 marks]

Answer :

 $(b) \quad (i) \quad K \,: \,$

J :

JAWAPAN boleh didapati di laman web www.afterschool.my

(ii)

14	54	53	60	46	64	61	66
58	71	51	45	56	54	58	47
57	45	64	55	53	49	53	59
61	63	43	49	47	52	48	63
48	68	49	64	68	46	46	52
Using	data in I	Diagram 1	4 and a c	lass interv	val of 5 m	ninutes, co	omplete

Answer :

(a)

Time(minutes)	frequency	Midpoint
40-45		
46 - 50		

Table 14

(b) (i)

(ii)

(c) Refer graph on the next page.

Graph for Question 14

A TIN University

15 You are not allowed to use graph paper to answer this question.

 (a) Diagram 15(i) shows a right prism with rectangular base ABHG on a horizontal plane. The surface ABCDE is its uniform cross-section. The rectangle CJKD is an inclined plane. The rectangle EDKF is a horizontal plane. The edges AE and BC are vertical edges. Given ED = BC = 3 cm.

Draw in full scale, the elevation of the solid on a vertical plane parallel to BH as viewed from X.

[4 marks]

Answers :

(a)

40

MULTIMEDIA UNIVERSITY www.mmu.edu.my

(b) A half-cylinder is joined to the solid in the Diagram 15(i) at the plane GHJKF to form a combined solid as shown in Diagram 15(ii).

Draw to full scale,

(i) the plan of the combined solid,[4 marks](ii) the elevation of the combined solid on a vertical plane parallel to AB as viewed from Y.[4 marks]

Answer: (b) (i)

(ii)

41

.**TM**

16 P (43°N, 50°E), Q and R are two points on the surface of the earth such that PR is the diameter of the earth and PQ is the diameter of a parallel of latitude.

(a)	Mark the position of Q and R in Diagram 16.	[2 marks]
(b)	State the position of Q.	[2 marks]
(c)	Calculate the shortest distance, in nautical miles, from P to Q measured along the surface of the earth.	[3 marks]
(d)	A jet plane took off from P due east to Q and then flew due south to R.	
	The average speed for the whole flight was 900 knots.	

- Calculate
- (i) the distance , in nautical miles, from P to Q measured along the parallel of latitude,
- (ii) the total time, in hours, taken for the whole flight.

[5 marks]

Answer:

(ii)

(c)

END OF QUESTION PAPER

TM

┨┣

Jawapan Mathematic

Mathematic Paper 1

No	Ans								
1	В	11	С	21	А	31	D	41	
2	D	12	В	22	В	32	D	42	
3	A	13	С	23	D	33	В	43	
4	C	14	А	24	А	34	D	44	
5	C	15	С	25	D	35	А	45	
6	В	16	В	26	А	36	С	46	
7	В	17	С	27	В	37	В	47	
8	C	18	D	28	В	38	С	48	
9	A	19	A	29	С	39	В	49	
10	C	20	D	30	D	40	D	50	

Mathematic Paper 2

.			
<u>No</u>	i) P R R R	(i) 1 M (ii) 2 M	3
2	$4x^{2} + 7x - 2 = 0$ (4x - 1)(x + 2) = 0 $x = \frac{1}{4}, or - 2$	1 M 1 M 1 M 1M	4
3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 M 1 M 1 M 1 M	4
4	\angle FBA or \angle ECD tan $< FBA = \frac{5}{12}$ \angle FBA = 22° 37' or 22.62°	1 M 1 M 1 M	3
5	 (a) True (b) KLMN has no two parallel sides (c) 2n2 + 5, n = 1, 2, 3, 4 	1 M 1 M 1 M 2 M	5
6	$V_{pyramid} = \frac{1}{3} \times 7 \times 7 \times 6$ $V_{prism} = \frac{1}{2} \times 7 \times 4 \times 7$ $\frac{1}{3} \times 7 \times 7 \times 6 + \frac{1}{2} \times 7 \times 4 \times 7$ 196		

	a) $m_{QR} = m_{PS} = -2$	1 M	
	$\frac{y+11}{x-2} = -2 \text{or } -11 = -2(2) + c$	1 M	
7	y = -2x - 7	1 M	5
	b) $0 = -2x - 7$	1 M	
	7		
	$x = -\frac{1}{2}$	1 M	
	a) $Q = \frac{1}{3 \times (-2) - (3) \times 4} \begin{pmatrix} -2 & -4 \\ -3 & 3 \end{pmatrix}$	1 M	
	$=\frac{1}{6}\begin{pmatrix} -2 & -4\\ -3 & 3 \end{pmatrix}$	1 M	
	(3 4) $\binom{3}{3} - \binom{4}{2}\binom{x}{y} = \binom{-6}{4}$	1 M	
8	$\binom{x}{y} = \frac{1}{6} \begin{pmatrix} -2 & -4 \\ -3 & 3 \end{pmatrix} \begin{pmatrix} -6 \\ 4 \end{pmatrix}$	1 M	6
	3	1 М	
	$x = \frac{1}{2}$	1 111	
	y = 5	1 M	
	Note: $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ \frac{5}{2} \end{pmatrix}$ accept for 1 M		
	60 22	1 M	
	a) $\frac{360}{360} \times \frac{7}{7} \times 14 \times 14 \text{ or } \frac{360}{360} \times \frac{7}{7} \times 24 \times 24$	1	
	$\frac{36}{360} \times \frac{22}{7} \times 24 \times 24 - \frac{36}{360} \times \frac{22}{7} \times 14 \times 14$	1 M	
	$=\frac{349\frac{19}{21}}{1}$	1 M	
9			6
	b) $\frac{60}{360} \times 2 \times \frac{22}{7} \times 14 \text{ or } \frac{90}{360} \times 2 \times \frac{22}{7} \times 24$	1 M	
	$10 + \frac{60}{360} \times 2 \times \frac{22}{7} \times 14 + 14 + \frac{90}{360} \times 2 \times \frac{22}{7} \times 24$	1 M	
	$= \frac{100\frac{8}{21}}{100}$	1 M	
	a) 12	1 M	
	24 - 122	2 М	
10	b) $0-6 = -2$	∠ 1 V1	6
	c) $\frac{1}{2}(24+12) \times 6 + 4 \times 12 + \frac{1}{2} \times 12 \times (t-10) = 204$	2 M 1 M	
	t = 18		

	(a) $S = \{(E, 2)\}$), (E, 5), (E,	8), (H, 2), (H, 5	(5), (H, 8), (U, 2), (U, 5), (U, 8)	1 M	
	$A = \{(H, 2)\}$), (H, 8)}			1 M	
11	= 2/9				1 M	6
11						0
	(b) $B = \{(E, 2)\}$), (E, 5), (E,	8), (U, 2), (U, 5), (U, 8), (H, 2), (H, 5)}	2 M	
	= 8/9				1 M	
	(a) 5				1 M	
	15				1 M	
	(b) Uniform s	cales			1 M	
	All 9 point	ts plotted co	orrectly.		2 M	
	Smooth cu	arve and pas	sed all 9 correct	points.	1 M	
12						12
	Refer to t	he graph.			1 M	
	(c) $x = 14.9$	0.1			1 M	
	y = 3.6 ().5				
	(d) y = -2x +	- 3			1 M	
	Straight li	ne y = $-2x +$	- 3 drawn		1 M	
	x = 3.2	0.1, -0.2 0.	1, 3.4 0.1		2 M	
	(a) (i) (1,4))			1 M	
	(ii) (1,0))			2 M	
	(b)(i)K : C	lockwise rot	ation of 900 aba	aut the centre P	3 M	
13	(ii) W :en	largement at	t centre P and s	cale factor 3	3 M	
	(c) $171 = 3^2 A$	Area of KLM	NP		1 M	
	Area of K	LMNP = (1')	71/9) cm ²		1 M	
		= 19	cm ²		1 M	
	a)			(i) all frequency correct	2 M	
	Time	Frequency	Mid point	(ii) all mid-point correct	1 M	
	40-44	2	42			
	45 - 49	12	47			
	50-54	8	52			
	55 - 59	6	57			
	60 - 64	8	62			
	65 - 69	3	67			
	70-74	1	72			
14	(b) (i) 45 - 49				1 M	
	<u>2(42)</u> +	+12(47)+8(3)	52)+6(57)+8(6)	52)+3(67)+1(72)	2 M	
		2+1	2+8+6+8+3+1			
	= 54.375		1 M			
	(c) • Unifo	rm scale on	the x-axis and o	n the y – axis	1 M	
	• 7 poir	nts plotting c	corecctly		2 M	
	plottin	ng (37, 0) ar	nd (77, 0)		1 M	
	all line	es completel	y drawn correct	ly	1 M	
1	frequency not	vgon – refer	to the graph.			

Graph for Question 14

