SEKOLAH BERASRAMA PENUH KEMENTERIAN PELAJARAN MALAYSIA

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2015 PHYSICS Kertas2 Mark Scheme Ogos / September

Question	Mark Scheme	Sub	Total
		Mark	Mark
1 (a) (i)	Triple beam balance	1	1
(b) (i)	Zero adjustment knob	1	2
(ii)	To adjust zero reading of the instrument	1	
(c)	62.4 g	1	1
			4

Question	Mark Scheme	Sub	Total
		Mark	Mark
2 (a) (i)	Elasticity is the property of an object to return to its	1	
	original length/shape after force exerted is removed		
(ii)	The spring is permanently deformed/damage // It has	1	
	reached its elastic limit // Beyond the elastic limit,		
	Hooke's Law is no longer applied.		2
(b) (i)	Extension, $x = 5 \text{ cm}$	1	
(ii)	Upper spring, $100 \text{ g} \longrightarrow x = 5 \text{ m}$		
	Two lower parallel springs, $100 \text{ g} \longrightarrow \text{x} = 2.5 \text{ m}$		
	Total extension = $5 + 2.5 = 7.5$ cm	1	
	Total length, $y = 10+10+5+2.5 = 27.5$ cm	1	3
			5

Question	Mark Scheme	Sub	Total
		Mark	Mark
3 (a)	Gamma	1	1
(b) (i)	Q neutral	1	
(ii)	P and R has charges // P has positive charge // R has	1	
	negative charge		2
(c) (i)	141	1	

(ii)	$E = mc^2$		
	$= (2.988 \text{ x } 10^{-28})(3 \text{ x } 10^8)^2$	1	
	$= 2.6892 \text{ x } 10^{-11} \text{ J}$	1	3
			6

Question	on Mark Scheme		Total
		Mark	Mark
4 (a) (i)	Thermal equilibrium is a condition where the net rate of	1	
	heat transfer between two bodies that are in contact is		
	zero // same temperature		
(;;)	The heat is transformed	1	-
(11)	The net rate of heat transfer is zero// Temperature is	1	
	equal	1	3
(b) (i)	$m_w c_w (95 - \theta) = m_e c_e (\theta - 27)$	1	
	$0.6 (4200)(95 - \theta) = 0.05(3320)(\theta - 27)$	1	
	$\theta = 90.78 \ ^{0}C$	1	4
(ii)	No heat loss to the summounding	1	-
	No heat loss to the suffounding.		
			7
5 (a) (i)	Diagram 5.1: convex lens, Diagram 5.2: concave lens	1	
	Diagram 5.1: parallel rays converged after passing		
(ii)	through the lens while, Diagram 5.2: parallel rays	1	
	diverged after passing through the lens	1	
	The focal point of the lens in Diagram 5.1 is the other		3
	side of the incident rays//The position in Diagram 5.1 at		
(111)	the right //the focal point of the lens in Diagram 5.2 is	1	
	at the same side as the incident rays // the position focal point in Diagram 5.2 at the left		
	If the long is a convex long the light converges after		
(b) (i)	hass through the lens or vice versa	1	
	If the lens is a convex lens, the focal point real and if the		2
(ii)	lens is a concave lens, the focal point virtual.	1	
(c) (i)	The image that can be formed on the screen	1	
(::)	Magnified	2	3
(11)	inverted	2	
Jumlah			

Question	Mark Scheme	Sub	Total
		Mark	Mark
6 (a)	A region where a charged body experiences electrical	1	1
	force		
(b)	When the polystyrene ball is brought to touch plate P,	1	2
	the polystyrene ball received <i>negative</i> charges It is		
	<u>repelled</u> and moves to plate Q.		
	When it touches plate Q, it is <i>positively</i> charged and it is	1	
	<u>repelled/attracted</u> to plate P.		
	Note:		
	Any two correct – 1 mark		
	All correct -2 marks		
(c) (i)	Potential difference in Diagram 6.2 > Diagram 6.1 //	1	
	vice-versa		
(ii)	Equal	1	
(iii)	Strength of electric field in Diagram 6.2 > Diagram 6.1	1	3
	// vice-versa		
(d) (i)	When potential difference between metal plates	1	
	increases, the strength of electric field increases // vice-		
	versa		•
(ii)	When strength of electric field increases, speed of	1	2
(11)	oscillation increases // vice-versa	1	
			8

Q	uestion	Mark Scheme	Sub	Total
			Mark	Mark
7	(a)	Pressure Law	1	1
	(b) (i)		1	
		P/ Pa		
				2
		T/ °C		
	(ii)	-273	1	

			10
	- Lid not easily open	1	
(ii)	-More number of lock	1	4
	- withstand higher pressure// wall not easily broken	1	
(e) (i)	-Thicker wall	1	
	Rate of collision between particles and the wall increase		
(d)	Kinetic energy increased //	1	1
	$P_2 = 1.69 \times 10^5 Pa$	1	
	285		
	$P_2 = (1.55 \times 105)(310)$		2
		1	
	$\frac{1}{(12+273)} = \frac{1}{(37+273)}$		
(c)	1.55×10^5 P_2		

Question	Mark Scheme	Sub	Total
_		Mark	Mark
8 (a)	Rate of charge flow	1	1
(b)	Cut magnetic flux //To produce induced current	1	1
(c)	1. current flows through the coil P produced magnetic	1	
	field	1	3
	2. cut by coil Q	1	
	3.Induced e.m.f across coil Q is produced//current		
(d) (i)	1.Bigger diameter	1	
	2.Lower resistance/higher current flow	1	
(ii)	1.More number of turns	1	
	2.Higher magnetic field/higher rate of cutting of	1	6
	magnetic flux		
(111)	1.Copper	1	
	2.Lower resistance/higher current flow	1	
(e)	Р	1	1
			12

Question	Mark Scheme	Sub	Total
		Mark	Mark
9 (a)	The ratio of sin i to sin r // the ratio of the speed of	1	1
	light in vacuum or air to the speed of light in medium.		
(b)	1. The incident angles in both prisms are the same.	1	
	2. The refractive index of glass is higher than the refractive index of water.	1	
	3. The critical angle of glass is smaller than the critical angle of water.	1	
	4. The higher the refractive index the smaller the		

	critical angle.		1	
	5. If the incident angle > t result in total internal refle bigger critical angle will re	1	5	
(c)	1. Diamond has higher refi	ractive index than glass.	1	
	2. The critical angle of diat the critical angle of glass.	1		
	3. Most of the rays that en internally reflected that ma	1		
	4. Most of the rays that ent but not reflected,	tered glass will be refracted	1	4
(d)				
	Suggestion /Design/Way	Explanation / Reason		
	2 prisms 45-90-45 //	To get total internal	2	
	Arrangement of prisms:			
		To make the image upright and not laterally inverted	2	
	Long focal length for	To form a magnified		
	focal length for eye lens	ımage	2	
	Big diameter of lens	More light can enter the instrument	2	
	The outer body made from lower density	Light and easy to carry.		Max
	material The body made from strong material	Does not break easily.	2	10
				20

10 (a)	A beam of fast movi	ng electron	1	1	
	The voltage supplied in Diagram 10.1 is smaller than that in Diagram 10.2 The strength of electric field in Diagram 10.1 is smaller than that in Diagram 10.2				
(b)	The deflection of the smaller than that in I	e cathode ray in Diagram 10.1 is Diagram 10.2	1	5	
	When the value of ve of electric field is low	oltage supplied is smaller, the strength wer	1		
	The smaller the stren deflection of the cath	ngth of electric field, the less the node ray	1		
(c)	When the cathode is surface // thermionic Electrons then accele The electrons travel The electrons / catho produce shadow.	1 1 1 1	4		
	AND gate	Reason To activate the fire extinguisher when the the smoke detector detect	2		
(d) (ii)	OR gate	To activate the device X when it detects smoke or detect high temperature	2	10	
	Relay switch	To switch on the secondary circuit with higher voltage supplied	2		
	Siren/ Alarm	To produce sound	2		
	Thermistor	Sensitive to heat // resistance varies with temperature	2		
		Jumlah		20	

Question	Mark Scheme		Sub Mark	Total Mark	
11(a)(i)	Bernoulli's principle states that the pressure of a moving liquid decreases as the speed of the fluid increases and vice versa.		1	1	
(a)(ii)	• The speed of air at t	1			
	higher / The speed of air at the lower part of the roof is lower		1		
	• The pressure at upp at lower part is high	1	4		
	 The difference in ai and lower part of th 	1			
(b)(i)	• Lifting force // $F =$ difference P x A				
(0)(1)	$w = ing = (10\ 000)(10)$				
	$= 100\ 000\ N$		1		
(b)(ii)	F = difference P x A		1	-	
	$= (3\ 000)(100)$ $= 300\ 000\ N$			5	
(b)(iii)	Net force. $F = 300000 - 100000$		1		
	$= 200\ 000\ N$		1		
(c)					
	Aspects	Explanations			
	Size of air noie is big	More air can flows into Bunsen burner	2		
	Size of gas nozzle is	Produce high velocity /	_		
	small	lower pressure	2		
	Size of base is wider	More stable	2	10	
	Has moveable collar	To control the amount of air entering the Bunsen burner through the air	2		
	Chosen design: R	Because R has big size of air hole, small size of gas nozzle, wider base and has moveable collar.	2		
	JUMLAH			20	

Question	Mark Scheme		Sub Mark	Total Mark
12(a)(i)	Frequency of any oscillating system in the absence of any other forces		1	
(ii)	Forced oscillation		1	_
(iii)	Pendulum B		1	
	because the natural frequency of B is the same as the		1	
	natural/ driving frequency of X.			
(iv)	Resonance		1	5
(b)				
	Characteristics	Reason		
	Large diameter of the	that more signals are		
	parabolic disc	received		
	Type of wave is	frequency is high.		
	microwave		2	
	Distance of signal	signals are focused at the		
	receiver from	receiver.	2	
	parabolic disc is same		2	
	as focal length			
	Height of the disc is	signal is not blocked.	2	
	high		-	
	D is chosen	diameter of the percholic		
	K IS CHOSEN	diameter of the parabolic	2	
		disc is large, transmits		
		microwave, distance of		
		signal receiver from the		
		disc is the same as the		
		focal length and height of		
		the parabolic disc is high.	2	10
			Z	10
(c)(i)	s = vt			
	$\int \frac{1}{2}$			
	$=1500 \times 0.12$		1	
	1000000000000000000000000000000000000		1	
	$=1500 \times 0.06$			
	= 90 m			
(ii)	$\lambda = \frac{v}{2}$			
	$\int f$			
	$=\frac{1500}{25000}$		1	
	-0.06 m		1	5
	– 0.00 III		1	20