

JABATAN PELAJARAN NEGERI TERENGGANU

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2011 PHYSICS Kertas 1 Sept. 2011 PERATURAN PEMARKAHAN

4531/1(PP)

UNTUK KEGUNAAN PEMERIKSA SAHAJA

Peraturan pemarkahan ini mengandungi 2 halaman bercetak

Question	Answer	Question	Answer
1	В	26	С
2	D	27	С
3	В	28	В
4	В	29	В
5	А	30	D
6	D	31	D
7	С	32	D
8	D	33	С
9	D	34	А
10	D	35	D
11	В	36	D
12	С	37	D
13	А	38	D
14	С	39	С
15	С	40	D
16	А	41	D
17	С	42	А
18	D	43	А
19	А	44	В
20	С	45	С
21	D	46	D
22	D	47	A
23	С	48	В
24	С	49	D
25	С	50	A

END OF MARKING SCHEME PERATURAN PEMARKAHAN TAMAT

JABATAN PELAJARAN NEGERI TERENGGANU

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2011 PHYSICS Kertas 2 Sept. 2011 PERATURAN PEMARKAHAN

4531/2(PP)

UNTUK KEGUNAAN PEMERIKSA SAHAJA

Peraturan pemarkahan ini mengandungi 7 halaman bercetak

SECTION A [60 MARKS]

Question		ion	Marking Criteria	Marks
1	(a)		No net heat transfer	1
	(b)		45°C	1
	(c)	(i)	Heat transfer from metal block to water	1
		(ii)	Increase the kinetic energy of the water molecule	1
			TOTAL	4
2	(a)		Transverse wave	1
	(b)			1
			0 amplitude	1
	(c)		$v = f\lambda$ 24 = f(6) f = 4 Hz	1
			TOTAL	5
3	(a)		Nuclear fission // chain reaction	1
	(b)		Uranium bombarded with neutron	1
			Splits the two lighter nuclei to become more stable nucleus	1
	(c)		Mass deflected = $236.0529 - 235.8653$	1
			= 0.1876 a.m.u	1
	(d)		Energy is the mass deflect / lost of mass	1
			TOTAL	6
4	(a)	(i)	Refraction	1
		(ii)	Light ray travels from water (denser medium) to air (less dense medium) // vice versa	1
			Velocity of light ray increases // vice versa	1
	(b)	(i)	$\begin{vmatrix} 1.33 = \frac{2.5}{h} \\ h = \frac{2.5}{1.33} \\ h = 1.88 \text{ m} \end{vmatrix}$	1
		(ii)	1 st : from observer bends to Z	1
			2 nd : straight line from observer to Z'	1

			TOTAL	7
5	(a)		Force per unit area	1
	(b)	(i)	Depth of water holes in Diagram 5.1 is shallower than in Diagram	1
			5.2	
		(ii)	The horizontal distance travelled by water jet in Diagram 5.1 is	1
		<i></i>	shorter than in Diagram 5.2	1
		(111)	The further the horizontal distance travelled by water jet, the higher	1
		(iv)	The deeper the depth of water, the higher the water pressure	1
	(c)	(\mathbf{IV})	Density of water	1
	(\mathbf{c})		The submarine submarges into deep water	1
	(u)		To withstand the high pressure due to deep water	1
				8
6	(2)		A temporary magnet only when current flows through the coils	1
	(h)	(i)	The number of dry cells in Diagram 6.1 is less than in Diagram 6.2	1
		(ii)	The magnitude of current in Diagram 6.1 is less than in Diagram 6.1	1
		(iii)	The number if pins attracted by the electromagnet in Diagram 6.1 is	1
		Ì Ì	less than in Diagram 6.2	
		(iv)	The strength of electromagnet in Diagram 6.1 is weaker than in	1
L			Diagram 6.2	
	(c)		The higher the current, the stronger the strength of electromagnet	1
	(d)		1 st : draw the correct pattern	1
			2 nd : mark the correct direction	1
			TOTAL	8
7	(a)		Isotopes with unstable nucleus tend to decay	1
L	(b)	(i)	Beta radiation / particle	1
		(ii)	Medium / moderate penetrating power	1

		(iii)	Geiger-Muller tube // GM Tube	1
	(c)	(i)	Because of background reading	1
		(ii)	Container R	1
			It shows the highest reading	1
		(iii)	420 count per second	1
	(d)		$80 \rightarrow 40 \rightarrow 20$	
			$2T_1 = 30$	1
			$T_{\frac{1}{2}}^{\overline{2}} = 15$ s (Answer with correct unit)	1
			TOTAL	10
8	(a)	(i)	Light Dependent Resistor // LDR	1
		(ii)	To complete the circuit of 240 V // To complete the secondary	1
			circuit	
		(iii)	Increases	1
		(iv)	Base voltage increases	1
			There is a base current	1
			There is a collector current	1
	(b)		P is earphone	1
			To convert the alternating current to sound	1
			Q is capacitor	1
			Block a steady current (direct current) from flowing into the	1
			transistor and microphone	
			R is microphone	1
			Change sound waves to alternating current	1
			TOTAL	12

SECTION B [20 MARKS]

Question		ion	Marking Criteria	
9	(a)	(i)	Product of mass and velocity $// p = mv$	1
		(ii)	 Total momentum in Diagram 9.1 is zero 	1
			• Magnitude of the momentum of the boy and the boat are equal	1
			• Direction of the momentum of the boy and the boat are opposite	1
			• Total momentum of the boy and the boat before and after the boy	1
			jumped are equal	
			 Total momentum before and after collision are equal 	1
	(b)		 Liquid oxygen and liquid hydrogen fuel is burnt in the 	1
			combustion	
			• The exhaust gas is ejected out of the rocket at high speed	1
			 Large backward momentum is produced 	1
			 The rocket gained a large momentum forward 	1

	(c)		Suggestions		Explanations	
			Aerodynamic shape		To reduce air resistance	1+1
			Use low density materia	al	It is lighter	1+1
			Use strong material		It does not break easily	1 1
			Use liquid oxygen		Boosting combustion	1+1
			Increase the size of the		More space for the furl to be	1+1
			combustion chamber		burnt	
			Has several stages that	can be	To decrease the mass	1+1
			slip / strip off			
				TO	ΓAL	20
10	(a)		A narrow beam of fast-m	noving ele	ectrons in a vacuum	1
	(b)	(i)	Negative / (-)			1
		(ii)	 Voltage of EHT in D 	iagram 10	0.1 is lower than in Diagram 10.2	1
			 The of cathode ray in 	Diagram	10.2 deflects more than in	1
			Diagram 10.1			
	(c)	(i)	When the voltage of EH	Γ increase	es, the strength of electric field	1
			increases // directly prop	ortional		
		(ii)	When the strength of electron	ctric field	increases, the deflection of	1
			cathode ray increases // c	lirectly pr	oportional	
	(d)		 The cathode is heated 	l emits ele	ectrons	1
			 The electron / cathod 	e ray is ac	ccelerated	1
			 Cathode rays travel in 	n a straigh	nt line	1
			 Cathode rays Is block 	ked by the	maltase cross	1
			 Cathode rays carry ki 	netic ener	rgy and converts to light energy	1
			when they hit the scre	een		
						[max 4]
	(e)		Components		Functions	
			Filament	To heat	up the cathode	1+1
			Cathode	Emit ele	ectrons	1+1
			Control grid	Control	the number of electrons //	1+1
				control	the brightness of the image on	
				the scree	en	
			Focusing anode	Focus th	ne electrons into a beam	1+1
			Accelerating anode	To acce	lerate electrons towards the	1+1
				screen		1.1
			Y-plates	To defle	ect the electrons vertically	
			X-plates	To defle	ect the electrons horizontally	1+1 [mov 10]
					[Any 5 pairs]	
				TO	ΓAL	20

Question		on	Marking Criteria			
11	(a)		Aerofoil		1	
	(b)	(i)	 The shape of cross section of v above the wing is higher than wing 	ving causes the speed of airflow the speed of airflow below the	1	
			 The higher the speed, the lower the pressure 			
			 Hence the air pressure below t 	 Hence the air pressure below the wing is higher than above 		
		(ii)	Bernoulli's Principle		1	
	(c)		Characteristics	Reasons		
			Shape of cross section of wing is aerofoil	To produce speed of airflow above the wing is higher than the speed of airflow below the wing	1+1	
			Large area of wing	To produce larger lift force	1+1	
			Density of the wing material is low	It is lighter // It can produce more upward force	1+1	
			High difference in speed of air	To produce higher difference in pressure	1+1	
			P is chosen because the shape is aerofoil, large area of wing, low density of wing material and high difference in speed of air.			
	(d)	(i)	$500 = \frac{F}{-}$			
			40		1	
			$F = 500 \times 40$ = 20000 N		1	
		(ii)	Resultant force = $20000 - 8000$	(10)	1	
		()	= 12000 N		1	
			Direction of force: upwards		1	
			TO	TAL	20	

SECTION C [20 MARKS]

12	(a)		Potential difference // Voltage		1
	(b)	(i)	 All symbols are correct 		1
		~ /	Ammeter and bulb are in series		
			 Voltmeter is in parallel 		1
			 Correct parallel connection of [bulbs	1
		(ii)			
	(c)		Characteristics	Reasons	
	(c)		Characteristics Thin diameter of wire	Reasons To produce high resistance	1+1
	(c)		Characteristics Thin diameter of wire Use coil wire	ReasonsTo produce high resistanceIncrease the resistance	1+1 1+1
	(c)		CharacteristicsThin diameter of wireUse coil wireParallel arrangement of heating	ReasonsTo produce high resistanceIncrease the resistanceIf one panel not function, the	1+1 1+1 1+1
	(c)		Characteristics Thin diameter of wire Use coil wire Parallel arrangement of heating panels	ReasonsTo produce high resistanceIncrease the resistanceIf one panel not function, the other panel still function	1+1 1+1 1+1
	(c)		CharacteristicsThin diameter of wireUse coil wireParallel arrangement of heating panelsHigh melting point	ReasonsTo produce high resistanceIncrease the resistanceIf one panel not function, the other panel still functionCan withstand high temperature	1+1 1+1 1+1 1+1
	(c)		CharacteristicsThin diameter of wireUse coil wireParallel arrangement of heating panelsHigh melting point	ReasonsTo produce high resistanceIncrease the resistanceIf one panel not function, the other panel still functionCan withstand high temperature	1+1 1+1 1+1 1+1
	(c)		CharacteristicsThin diameter of wireUse coil wireParallel arrangement of heating panelsHigh melting pointG is chosen because thin diameter	ReasonsTo produce high resistanceIncrease the resistanceIf one panel not function, the other panel still functionCan withstand high temperatureof wire, use coil wire, parallel	$ 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1+1 $
	(c)		CharacteristicsThin diameter of wireUse coil wireParallel arrangement of heating panelsHigh melting pointG is chosen because thin diameter arrangement of heating panels and	ReasonsTo produce high resistanceIncrease the resistanceIf one panel not function, the other panel still functionCan withstand high temperatureof wire, use coil wire, parallel high melting point.	1+1 1+1 1+1 1+1 1+1
	(c) (d)	(i)	CharacteristicsThin diameter of wireUse coil wireParallel arrangement of heating panelsHigh melting pointG is chosen because thin diameter arrangement of heating panels and Electrical energy → Light energy	ReasonsTo produce high resistanceIncrease the resistanceIf one panel not function, the other panel still functionCan withstand high temperatureof wire, use coil wire, parallel high melting point.	$ 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1 $
	(c) (d)	(i) (ii)	CharacteristicsThin diameter of wireUse coil wireParallel arrangement of heating panelsHigh melting pointG is chosen because thin diameter arrangement of heating panels and Electrical energy → Light energy40 = I(240)	ReasonsTo produce high resistanceIncrease the resistanceIf one panel not function, the other panel still functionCan withstand high temperatureof wire, use coil wire, parallel high melting point.	$ \begin{array}{c} 1+1\\ 1+1\\ 1+1\\ 1+1\\ 1+1\\ 1 \end{array} $
	(c) (d)	(i) (ii)	CharacteristicsThin diameter of wireUse coil wireParallel arrangement of heating panelsHigh melting pointG is chosen because thin diameter arrangement of heating panels and Electrical energy \rightarrow Light energy $40 = I(240)$ $I = \frac{40}{210}$	ReasonsTo produce high resistanceIncrease the resistanceIf one panel not function, the other panel still functionCan withstand high temperatureof wire, use coil wire, parallel high melting point.	$ \begin{array}{r} 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1 \\ 1 1 1 1 1 $
	(c) (d)	(i) (ii)	CharacteristicsThin diameter of wireUse coil wireParallel arrangement of heating panelsHigh melting pointG is chosen because thin diameter arrangement of heating panels and Electrical energy \rightarrow Light energy40 = I(240) I = $\frac{40}{240}$ = 0.167 A	ReasonsTo produce high resistanceIncrease the resistanceIf one panel not function, the other panel still functionCan withstand high temperatureof wire, use coil wire, parallel high melting point.	$ \begin{array}{r} 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1 1 1 1 1 $
	(c) (d)	(i) (ii)	CharacteristicsThin diameter of wireUse coil wireParallel arrangement of heating panelsHigh melting pointG is chosen because thin diameter arrangement of heating panels and Electrical energy \rightarrow Light energy $40 = I(240)$ $I = \frac{40}{240}$ $= 0.167 A$	ReasonsTo produce high resistanceIncrease the resistanceIf one panel not function, the other panel still functionCan withstand high temperatureof wire, use coil wire, parallel high melting point.	$ \begin{array}{r} 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $
	(c) (d)	(i) (ii)	CharacteristicsThin diameter of wireUse coil wireParallel arrangement of heating panelsHigh melting pointG is chosen because thin diameter arrangement of heating panels and Electrical energy \rightarrow Light energy40 = I(240)I = $\frac{40}{240}$ = 0.167 AF = 40 × 8 × 20	ReasonsTo produce high resistanceIncrease the resistanceIf one panel not function, the other panel still functionCan withstand high temperatureof wire, use coil wire, parallel high melting point.	$ \begin{array}{r} 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $
	(c) (d)	(i) (ii)	CharacteristicsThin diameter of wireUse coil wireParallel arrangement of heating panelsHigh melting pointG is chosen because thin diameter arrangement of heating panels and Electrical energy \rightarrow Light energy $40 = I(240)$ $I = \frac{40}{240}$ $= 0.167 A$ E = $40 \times 8 \times 20$ $= 6400$ Wh or 6.4 kWh	ReasonsTo produce high resistanceIncrease the resistanceIf one panel not function, the other panel still functionCan withstand high temperatureof wire, use coil wire, parallel high melting point.	$ \begin{array}{r} 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1+1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $

END OF MARKING SCHEME PERATURAN PEMARKAHAN TAMAT

JABATAN PELAJARAN NEGERI TERENGGANU

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2011 PHYSICS Kertas 3 Sept. 2011 PERATURAN PEMARKAHAN

4531/3(PP)

UNTUK KEGUNAAN PEMERIKSA SAHAJA

Peraturan pemarkahan ini mengandungi 6 halaman bercetak

Question			Marking Criteria				Marks	
1	(a)	(i)	Refractive index	// type of transpa	rent material / n		1	
		(ii)	Refracted angle /	r			1	
		(iii)	Incident angle / i	1				
	(b)		n	r / °	sin r	1		
						sin r		
			1.49	19.0	0.3256	3.07		
			1.92	16.5	0.2840	3.52		
			2.42	12.5	0.2164	4.62		
			2.91	10.6	0.1851	5.40		
			3.50	8.6	0.1492	6.70		
			Columns of a	r sin r ¹				
			- Columns of I	$\frac{1}{\sin r}$			1	
			 All the units 	of n r sin r $\frac{1}{2}$	– are correct		1	
				sin	r		•	
			 All the value 	s of r <u>+</u> 0.5°			1	
			 Values of r c 	onstant at 1 decin	mal places		1	
			 Values of sir 	r constant at 4 d	ecimal places		1	
			 Values of — 	$\frac{1}{2}$ constant at 2.	decimal place		1	
			- Values of $\frac{1}{\sin r}$ constant at 2 decimal place					
			• All the value	s of r, sin r, $\frac{1}{\sin r}$	- are correct		1	
	(c)		• n at y-axis and	nd $\frac{1}{\sin x}$ at x-axis	8		1	
			• The units of 1	sin r			1	
			 The units at Doth owig how 	both axis are corr	ect		1	
			 Dotti axis nas 5 pointe ere s 	s a minual scale af	id not odd scale		1	
			 J points are j J points are j 	plotted correctly			1	
			 S points are j Smooth line 	folled confectly			1	
			The minimum	m size 5×4 from	norigin to the las	t point	1	
<u> </u>	(d)		Directly proporti	onal	i origin to the las	r point	1	
	(**)		TOTAL			16		
2	(a)	(i)	Directly proporti	onal			1	
		(ii)	Straight line from	n 0.54 to the grap	h		1	
		. /					1	
			$\frac{-}{a} = 2.7$					
			$a = 0.37 \text{ m}^2$				1	
		(iii)	Draw a sufficient	t large triangle (n	ninimum size 10	cm vertical)	1	
			Correct substitut	ion (follow candi	dates' triangle)		1	
			1.0 - 0					
			4.9 - 0					
			$ = 0.20 \text{ m}^2$ (with /	$= 0.20 \text{ m}^2 \text{ (with / without unit)}$				

SECTION A [28 MARKS]

(b)		700	1
		$f = \frac{1}{0.2}$	
		$= 3500 \text{ Hz s}^{-1}$	1
(c)	(i)	Increases	1
	(ii)	From the formula, gradient is inversely proportional to frequency	1
(d)		Repeat the experiment for a few times and take the average // The	1
		position of eye must perpendicular to the scale of reading of the	
		metre rule	
		TOTAL	12

SECTION B [12 MARKS]

Question		on	Marking Criteria	Marks
3	(a)		State a suitable inference	1
			Buoyant force depends on the volume of water displaced	
	(b)		State a relevant hypothesis	1
			The larger the volume of water displaced, the larger the buoyant	
			force	
	(c)	(i)	State the aim of the experiment	1
			To investigate the relationship between the volume of water	
			displaced and the buoyant force	
		(ii)	State the manipulated and responding variable	1
			MV: Volume of water displaced	
			RV: Buoyant force	
			State a constant variable	1
			Density of water	
		(iii)	List out the important apparatus and materials	1
			Ureka can, spring balance, 100 ml beaker, plasticine, thread	
		(iv)	Draw a functional diagram of the arrangement of apparatus	1

	Spring balance W_2	
	Eureka can Plasticine Water Water Displaced water	
(v)	State the method of controlling the manipulated variable Immerse the plasticine into the water and measure the immerse distance	1
	State the method of controlling the responding variable Measure the mass of the water collected from ureka can and find the weight using formula W = mg.	1
	Repeat the experiment at least 5 times with different valuesRepeat the different immerse distance	1
(vi)	Tabulation of data	1
	V / cm ³ F / N 2.0 4.0 6.0 6.0	
	8.0	
	12.0	
(vii)	 State how data will be analysed A graph of buoyant force against volume of water displaced is plotted 	1
	F/N V/cm^3	
	TOTAL	12

4	(a)		State a suitable inference	1
			Brightness of bulb depends on cell / battery voltage	
	(b)		State a relevant hypothesis	1
			The larger the voltage / potential difference, the larger the current	
	(c)	(i)	State the aim of the experiment	1
			To investigate the relationship between the voltage and current	
		(ii)	State the manipulated and responding variable	1
			MV: Voltage / potential difference RV: Current	
		(iii)	State a constant variable	1
		(\cdot)	Resistance of conductor	1
		(1V)	List out the important apparatus and materials	1
			Voltmeter, ammeter, constantan wire, battery, rheostat	
		(v)	Draw a functional diagram of the arrangement of apparatus	1
		(vi)	State the method of controlling the manipulated variable	1
			Adjust the rheostat and record the initial reading of voltmeter such as 0.5 V	
		(vii)	State the method of controlling the responding variable	1
			Read and record the reading of the ammeter	
			Repeat the experiment at least 5 times with different values	1
			Repeat the experiment 5 times by adjusting the rheostat to get different potential difference / voltage / reading of ammeter	

Tabulation of data	1
V / V I / A	
0.5	
1.0	
1.5	
2.0	
2.5	
3.0	
State how data will be analysed A graph of current against potential difference / voltage is plotted I / A	1
V / V	
TOTAL	12

END OF MARKING SCHEME PERATURAN PEMARKAHAN TAMAT