PHYSICS

PAPER 1 (ANSWERS)

1. B
2. D
3. A
4. C
5. D
6. C
7. B
8. C
9. C
10. B
11. C
12. A
13. C
14. A
15. A

16. B

17. C

18. E 19. B

20. B

21. D

22. D

23. B

24. A25. B26. B

27. C 28. C 29. D 30. D 31. C 32. A 33. C 34. D 35. E 36. B 37. C 38. C 39. C 40. D 41. E 42. D 43. C 44. C 45. B 46. D 47. C 48. B 49. B 50. E

Marking scheme Paper 2

Section A

Section	Marks	Answer
Question 1		
(a)	1	Potential difference
(b)	1	2.7 V
(c)	1	Parallel
(d)	1	Avoid parallax error
Total	4	
Question 2		
(a)	1	inertia
(b)	1	1000(0.30) / 0.2
	1	$1.5 \times 10^4 \text{ N}$
(c)(i)	1	time collision increases
(c)(ii)	1	safety seat belt.
Total	5	

Question 3 (a)(i)	1	diffracted ray	
		ond-fig variable 3 Diff	
(a)(ii)	1	Diffraction	
(b)	1	Amplitude decreases	
	1	Energy of the wave is separated	
(c)	1	$\lambda = 0.4 \text{ m}$	
	1	$v = 5 \times 0.4 = 2 \text{ ms}^{-1}$	
Total	6		
Question 4	_		
(a)(i)	1	The process of changes from a.c to d.c.	
(b)(i)	1		
(b)(ii)	1	R	
(c)(i)	1		
(c)(ii)	1	Charges and discharges process// smooth the waves	
(d)	1 1	$V_{\text{peek}} = 240 \text{ x} / 2$ 340 V	
Total	7		
Question 5			
(a)(i)	1	Parallel rays reflected by both mirror towards focal point, F.	
(a)(ii)	1	Focal length both of the mirrors is FP // CP = 2F	
(b)(i)	1	Curvature of Y mirror is greater than curvature of X mirror.	
	1	Focal length of X mirror is greater than focal length of Y mirror.	
(c)	1	The greater the curvature of mirror, the bigger the focal length.	
(d)	1	Reflected ray is parallel to principle axis // CP	
(e)	1	Car headlight/ torchlight	
T 1	1	To produce long distance light rays.	
Total	8		
Questin 6	1	All the type of redicactive review he detected	
(a) (b)(i)	$\frac{1}{1}$	All the type of radioactive ray can be detected.	
(b)(i)	1	The readings of rate meter decrease. At the end the readings of rate meter remain.	
	1	The readings for A source decrease faster.	
(b)(ii)	1	Same @ constant	
(3)(11)		Swiii w voiiowiii	

(b)(iii)	1	Reading @ background ray
(c)	1	Alfa particle
	1	The power of penetration is low
Total	8	
Question 7		
(a)(i)	1	Elastic Potential Energy
(a)(ii)	1	12 cm
(a)(iii)	1	k = F/x = 3.6/4
	1	$= 0.9 \text{ N cm}^{-1}$
(a)(iv)	1	x = 5/0.9 or 5.56
	1	1 = 12 - 5.56 = 6.44 cm
(b)(i)	1	Directly proportional
		J 1 1
(b)(ii)	1	Not be able to return to its original shape and size.
(-)()		S a s of
(b)(iii)	1	Add spring in parallel
(-)(-)	1	Use spring that have greater spring constant
Total	10	Start
Question 8		
(a)	1	Isotope with unstable nucleic.
(b)	1	D
	1	The reading of count rate is highest.
	_	
(c)(i)	1	$^{226}_{88}$ Ra $^{-222}_{86}$ Rn $^{+4}_{2}$ He
(c)(ii)	1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(-)(-)		Natrium -24 : $3T = 45$
	1	T = 15 hours
	1	Cobalt -60 : $T = 15.9/3 = 5.3 \text{ years}$
	1	Radium - 226 : $T = 4860/3 = 1620$ years
(d)(i)	1	Natrium – 24
	1	Short half-life
	1	Emitting beta ray @ can be absorb in the ground but cannot
		absorbed in pipe.
Total	12	

Section B

Section	Marks	Answer
Question 9	1	The pressure because of air mass/atmospheric
(a)(i)		
(ii)	1	the ping-pong ball in figure 9.2 is pushed to the water flow
	1	$P_1 = P_2$ // atmospheric pressure.
	1	$P_3 < P_4$
	1	when air is flowing, the surrounding pressure was reduced.
	1	$P_3 > P_4$
	1	the ping-pong ball is pushed to low pressure/ to water flow
	1	Bernoulli's principle.
(iii)		Bernoulli's principle
(b)	1	The upwards air velocity of the wing/aerofoil is greater
	1	The upwards pressure of the wing/aerofoil is higher
	1	The different between upwards and downwards of the wing
		produced lifted force.
(c)	1	Used air gun
	1	To obtain continues air flow
	1	the narrow of the jet / the thin air gun
	1	Air flow is greater
	1	Paint container made from metal
	1	Not easy to break
	1	Used the low density of metal
	1	light and mobility /easy to manage
	1	the volume of the paint container is bigger
	1	no need to refill
Total	20	
Question		
10(a)	1	A distance between two successive crests or two successive
		troughs.
(b)	1	Hard surface
	1	Same wavelength
	1	Wave is reflected from hard surface
	1	Angle of reflection ray is equal to angle of incidence ray.
	1	Echoes
(c)	1	In the region of the shallow water:
	1	wavelength is reduced
	1	speed is reduced
	1	After passing the shallow region:
	l 1	circular wavefront will be converged to the focal point, F
	1	after that it will be diverged

ANSWERS Higher Education

(d)		Suggestion	Explanation	
(u)	1	Suggestion Roof of the house is bent	to reduce the difference in	
	1	1 1		
	1	into a curved shape.	pressure	
	1	Bigger mass of the roof	need bigger force to be lifted.	
	1	Concrete wall	Harder @ to prevent the hit	
	1	Concrete wan	U 1	
	1	House is built in bay area	by the strong wave. small amplitude of wave @	
	1	Trouse is built in day area	calm wave.	
	1	House is built in the area that	Water wave is reflected	
	1	have barmier	water wave is reflected	
Total	20	Have barriner		
Total	20			
Question				
11	1	solar energy heat energy	<i>I</i>	
(a)				
(b)(i)		Characteristic	Reason	
	1	Used concave mirror	Reflecting and converging	
	1		solar energy to solar heater	
	1	Concave mirror with small	Short focal length @ more	
	1	curvature aperture.	converged @ high converged	
		curvatare aperture.	power	
	1	Wall with blackened surface	Rate of absorption of solar	
	1	Waii Willi Stackened Sarrace	heat is high.	
	1	Low specific heat capacity	container is easy to hot and	
	1	l specific fieur cupucity	easy to transfer heat to water	
(b)(ii)	1	R	, ,	
	1	Used concave mirror, concave i	mirror with small curvature	
		aperture, wall with blackened su		
		capacity.		
(c)	1	It's easy to renew		
	1	Cheap		
	1	Pollution is not happened		
	1	Malaysian have a sun light for t	he hold year	
(d)(i)	1	Q = 1.5 x 4 200 x 6		
	1	= 37 800 J		
(d)(ii)	1	80 x 600 @ 48 000J		
	1	48 000 – 37 800 @ 10 200		
	1	$Q = 1.25 \times 10^{6} J = 850 J$		
		4000		
	Total	20		
Question		The ratio of potential difference	ce (V) across the conductor to the	
12	1	current (I).		
(a)(i)				
(a)(ii)	1	Alternating current flows through the primary coil and induced		
		the magnetic field.		

	1	
	1	The iron core becomes electromagnetic.
	1	The alternating current produced the changing in the polarity of the
		magnetic field.
	1	Changes in the magnetic flux occur in the secondary coil.
	1	The changes in the magnetic flux produces an induced
	1	electromotive
		force / current across the secondary coil.
		(Choose four of these)
(a)(iii)		Aspects to be consider
	1	- the type of current generated is alternating current.
	1	- the potential difference of the alternating current supply
		can be raised or lowered using transformer.
	1	- a high voltage transmission
	1	
	1	- by reducing the current in the cables , the loss of the
		electrical power will be less.
	1	- by using the low density of cables.
	1	- so that it is lighter / easier to support.
	1	- the resistance of the cables should be low.
	1	- reduce the energy loss.
	1	Choice: Q
	1	Because alternating current, a high voltage transmission,
4 > 4		cables with low density and less resistance.
(b) (i)	1	Secondary current = 2A
(b)(ii)	1	Output power $P = I^2R + 24$
	1	= 48 W
	1	Input power $P = VI$
		=60W
	1	Efficiency = (output power / input power) x 100
	1	= 80%
Total	20	— 00/0
Total	20	

Marking scheme Paper 2

Section A

Sec	Marks	Answers
Question 1		
(a)	1	Potential difference / voltage
(b)	1	2.7 V
(c)	1	Parallel
(d)	1	Avoid parallax error
Total	4	

ANSWER S2K2Q05

a(i)	1	Parallel rays reflected by both mirror towards	
		focal point, F.	
a(ii)	1	Focal length of both mirrors is FP <u>or</u> Focal point	
		F is situated in the middle of the radius of	
		curvature, R \underline{or} CP = 2F	
b(i)	1	The curvature of mirror Y is greater than the	
		curvature of mirror X <u>or</u> Mirror Y is more	
		curved than mirror X.	
b(ii)	1	Focal length of mirror X is greater than focal	
		length Y.	
c	1	The greater the curvature of mirror, the shorter	
		the focal length.	
d	1	Reflected ray is parallel to principle axis or CP.	
e	1	Torch light <u>or</u> motorbike <u>or</u> car light.	Accept other answer
	1	To produce long distance light ray / infinity.	that correct.
Total	8		

ANSWER S2K2Q06

a	1	Degree of hotness.		
b	1	Metal Q is higher / vice versa.		
c	1	Container Y is faster / vice versa.		
d(i)	1	The bigger the area, the faster the temperature	_	
		become constant.		
d (ii)	1	The rate of heat absorbed is equal the rate of heat		
		released.		
d (iii)	1	Thermal Equilibrium		
e	1	The constant temperature for metal R is higher.	_	
	1	The amount of heat is greater.		
Total	8			

Answers

Sec	Marks	Answers	
Question 12			
(a)(i)	1	The ratio of potential difference (V) across the conductor	to the
		current (I).	
	1	1. Alternating current flows through the primary coil and induc	ed the
		magnetic field.	
	1	2. The iron core becomes electromagnetic.	
	1	3. The alternating current produced the changing in the polarity	of the
		magnetic field.	
	1	4. Changes in the magnetic flux occur in the secondary coil.	
	1	5. The changes in the magnetic flux produces an i	induced
		electromotive	
		force / current across the secondary coil.	
		(Choose four of these)	
(ii)		Aspects to be consider	
	1	- the type of current generated is alternating current.	
	1	- the potential difference of the alternating current supply	
		can be raised or lowered using transformer.	
	1	- a high voltage transmission	
	1	- by reducing the current in the cables , the loss of the	
		electrical power will be less.	
	1	- by using the low density of cables.	
	1	- so that it is lighter / easier to support.	
	1	- the resistance of the cables should be low.	
	1	- reduce the energy loss.	
	1	Choice: Q	
	1	Because alternating current, a high voltage transmission,	
		cables with low density and less resistance.	
(b) (i)	1	Secondary current = 2A	

	1	Output power $P = I^2R + 24$
	1	= 48 W
	1	Input power $P = VI$
		=60W
	1	Efficiency = (output power / input power) x 100
		= 80%
Total	20	

Marking scheme Paper 3

Section A

Section	Marks	Answer				
Question 1						
(a)(i)	1	Mass of oil, m				
(a)(ii)	1	Rise in temperature of oil, θ				
(a)(iii)	1	Power @ type of immersion @ heater @ time of heating				
(b)	1	26 °C				
(c)	6	m(kg)	$1/m(kg^{-1})$	$ heta_{ m f}$	θ	
		0.20	5.0	58	32	
		0.25	4.0	51	25	
		0.30	3.3	47	21	
		0.35	2.9	44	18	
		0.40	2.5	42	16	
(c)	5					
(d)	1	θ_f is inversely proportional to m				
Total	16					
Question 2						
(a)	1	T^2 is directly proportional to 1 $T^2 = 1.69 \text{ s}^2$				
(b)	1	$T^2 = 1.69 \text{ s}^2$				
	1	Show on the grap	ohs when $T^2 = 1.6$	69 s^2		
	1	length of pendulu	am = 42 cm			
(c)(i)	1	show on the graph				
	1					
		$\frac{2.10 - 0.65}{5^2 - 16}$				
	1	$0.040 \text{ s}^2 \text{ cm}^{-1}$				
(c)(ii)	1	g = 0.3948				
		0.04				
	1	$= 9.87 \text{ ms}^{-2}$				
(d)	1	$T^2 = 0.3948 \ 80 \ $				
		9.87	7			
	1	T = 1.79 s				
(e)	1	The simple pendulum swings through small angles from its				
		equilibrium posit	ion.@ Set up wi	nd block so its not	affected by	
		wind.				
Total	12					
SECTION						
В						
Question 1						
(a)	1	Student P, who is swinging with a longer metal chain ,oscillates				
		with a longer per				
(b)	1	The longer the length of a pendulum, the longer the period of its				
		oscillation.				
(c)(i)	1	To investigate the relationship between the length of a pendulum				

(ii)	2	and its period o manipulated va responding vari	riable – leng able – the pe	th of a simple riod of oscill	ation, T	
(iii)	1	constant variable – the mass of the pendulum bob. A pendulum bob, 120 cm of string, a retort stand, a metre-rule, a splitted cork, a stopwatch, a protractor and a 1 kg weight.				
(iv)	1	retort stand splitted cork protractor string				
(v)	1	The length of the string, which is measured from the centre of the pendulum bob, is set at $L = 100.0$ cm. The time of 20 complete oscillations, t_1 , is recorded by using a				
	1	stopwatch. The experiment cm, and 20 cm.	t is repeated			_
		Length, Time for 20 oscillations				
(vi)	1	L/cm	t ₁ /s	t ₂ /s	Average t/s	Period T/s
		100.0			0.5	
		80.0				
		60.0				
		40.0				
		20.0				
(vii)	1	The result of the graph shows that the period of oscillation, T, of a pendulum increases with increasing length of the pendulum, L.				
Total	12					
Question 2						
(a)	1	When the object by the observer observer.	-	•		-
(b)	1	As an object is the distance bet			_	- 1

		angle of reflection made by the reflected ray with the mirror.				
(c)(i)	1	To investigate the relationship between the object distance from				
(ii)	2	the observer and the angle of reflection made by the reflected ray. Manipulated variable – object distance from the observer, x Responding variable – angle of reflection				
(iii)	1	Constant variable – distance of object and observer from mirror. Alight box, a narrow slit, plane mirror, power supply, protractor, metre rule.				
(iv)	1	plane mirror normal s R Q P O E A power source light box				
(v)	1	Distance, d/cm Reflected angle, ∠r° 4.0 6.0 8.0 10.0 12.0 12.0				
(vi)	1 1 1	Two points O and E are marked on the line AB with $d = 4.0$ cm The angle of reflection $<$ r is measured by using a protractor. The experiment is repeated with numerous distance from E, $d = 6.0$ cm, 8.0 cm, 10.0 cm and 12.0 cm				
(viii)	1	∠r° d/cm				
		The shape of the graph shows that the hypothesis is proven correct.				
Total	12					